Hostname: page-component-594f858ff7-wfvfs Total loading time: 0 Render date: 2023-06-07T07:00:15.567Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": false, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Anomalous Evolution of Bubbles in Krypton-Implanted SiO2

Published online by Cambridge University Press:  01 February 2011

Hannan Assaf
Affiliation:, CNRS, Centre d'Etudes et de Recherches par Irradiation CERI, 3A rue de la Férollerie, Orléans, 45071, France, +33238257604, +33238630271
Esidor Ntsoenzok
Affiliation:, CERI-CNRS, 3A, rue de la Férollerie, Orléans, 45071, France
Marie-France Barthe
Affiliation:, CERI-CNRS, 3A, rue de la Férollerie, Orléans, 45071, France
Elisa Leoni
Affiliation:, CERI-CNRS, 3A, rue de la Férollerie, Orléans, 45071, France
Marie-Odile Ruault
Affiliation:, CSNSM, CNRS-IN2P3, Batiment 108 - Université Paris Sud XI, Orsay, 91405, France
S. Ashok
Affiliation:, The Pennsylvania State University, Department of Engineering Science and Mechanics, 212 Earth and Engineering Science Building, University Park, PA, 16802, United States
Get access


Thermally grown SiO2 was implanted at room temperature with 220 keV Kr in order to generate bubbles/cavities in the sample. The formation and thermal stability of these bubbles/cavities is studied in this work. Transmission Electron Microscopy (TEM), Rutherford Backscattering Spectrometry (RBS) and Positron Annihilation Spectroscopy (PAS) were used to provide a comprehensive characterisation of defects (bubbles, vacancy, Kr and other types of defects) created by Kr implantation in SiO2 layer. These measurements suggest that the bubbles observed with TEM were a consequence of the interaction between Kr and vacancies (V), with VnXem complexes created in the whole of implanted zone. After annealing, bubbles/cavities disappear from SiO2 due to the strongly desorption of Kr and the decrease in vacancy concentration.

Research Article
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Caspers, L. M., Fastenau, R.H.J., Veen, A. Van, Heugten, W.F.W.M. Van, Phys. Stat. Sol. 46 a (1978) 541.CrossRefGoogle Scholar
2. Johnson, P.B., Stevens, K.J., Thomson, R.W., Nucl. Instr. and Meth B 62 (1991) 218.CrossRefGoogle Scholar
3. Raineri, V., Saggio, M., Rimini, E., J. Mater. Res. 15(2000).CrossRefGoogle Scholar
4. Delamare, R., Ntsoenzok, E., Labhom, F., Veen, A. Van, Grisolia, J., Claverie, A., Nucl. Instr. and Meth B 186 (2002) 324.CrossRefGoogle Scholar
5. Maziasz, J., J. Nucl. Mat. 122&123 (1984) 472 CrossRefGoogle Scholar
6. McHugo, S.A., Weber, E.R., Myers, S.M., Peterson, G.A., J. Electrochem. Soc. 145 (1998) 1400.CrossRefGoogle Scholar
7. Peterson, G.A., Myers, S.M., Follstaedt, D.M., Nucl. Instr. Meth. B 127/128 (1997) 301.CrossRefGoogle Scholar
8. Bruel, M., Elect. Lett. 31 (1995)1201.CrossRefGoogle Scholar
9. Ntsoenzok, E., Assaf, H., Ruault, M.O., Materials Research Society Symposium Proceedings, Vol. 864, 2005, 327337.Google Scholar
10. Assaf, H., Ntsoenzok, E., Ruault, M.O. and Ashok, S., Materials Research Society Symposium Proceedings, Vol. 914, 2006, 439444.CrossRefGoogle Scholar
11. Fujinami, M. and Chilton, N.B., Appl.Phys.Lett. 62, 1131 (1993)CrossRefGoogle Scholar
12. Guillot, B., Guissani, Y., J. Chem. Phys. 105 (1996) 255.CrossRefGoogle Scholar