Skip to main content Accessibility help
×
Home
Hostname: page-component-888d5979f-7wfd5 Total loading time: 0.146 Render date: 2021-10-25T16:31:39.882Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Annealing time and collection efficiency in electrodeposited CdS/CdTe solar cells

Published online by Cambridge University Press:  21 March 2011

G. Agostinelli
Affiliation:
European Commission, Joint Research Centre, TP 450, 21020 Ispra (VA), ITALY
E.D. Dunlop
Affiliation:
European Commission, Joint Research Centre, TP 450, 21020 Ispra (VA), ITALY
B. Ebner
Affiliation:
European Commission, Joint Research Centre, TP 450, 21020 Ispra (VA), ITALY
N. Gibson
Affiliation:
European Commission, Joint Research Centre, TP 450, 21020 Ispra (VA), ITALY
Get access

Abstract

This paper presents a detailed analysis of the spatially resolved evolution of External Quantum Efficiency of electrodeposited CdS/CdTe solar cells as a function of the duration of the post-deposition annealing process which promotes n to p-type conversion of electrodeposited CdTe. Strips of 30×4 cm were cut from deposited plates at various stages of the fabrication process and processed into cells. Annealing treatments were carried out on these strips at 400°C for times ranging from 1 to 120 minutes. 130 spectral response curves (in the range of 300 to 900 nm) have been measured to trace temporal evolution and spatial non-uniformity of the materials and extrapolate parameters such as effective diffusion lengths, evolution of the collection profiles, and junction depth. Correlation between these parameters suggests that recrystallisation does not take place uniformly but progresses through the film. The analysis of structural vs. optical parameters along the cells provides evidence for spatial non-uniformities of the state of crystallisation of as-deposited and annealed material. Poor performance has been observed near the edges of the cells where material is resistant to recrystallisation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gibson, P.N., Baker, M.A., Dunlop, E.D., Özsan, M.E., Lincot, D., Froment, M. and Agostinelli, G., Thin Solid Films 387/1-2(2000)Google Scholar
2. Gibson, P.N., Baker, M.A., Dunlop, E.D., Özsan, M.E., Lincot, D., Froment, M. and Agostinelli, G., Proc 16th European PVSEC, Glasgow, 2000 (to be published)Google Scholar
3. Duffy, N.W., Lane, D., Özsan, M.E., Peter, L.M., Rogers, K.D., Wang, R.L., Thin Solid Films 361–362 (2000) 314320 CrossRefGoogle Scholar
4. Bätzner, D.L., Guido Agostinelli, Romeo, A., Zogg, H. and Tiwari, A.N., This MeetingGoogle Scholar
5. Clemmink, I., Burgelman, M., Casteleyn, M., Depuydt, B., Int. J. Sol. Energy 12 (1992) 67 CrossRefGoogle Scholar
6. Toyama, T., Yamamoto, T., Okamoto, H., Sol. Energy Mater. Sol. Cells 49 (1997) 213218 CrossRefGoogle Scholar
7. Agostinelli, G. and Dunlop, E.D., submitted at the 17th European PVSEC, Munich, 2001 Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Annealing time and collection efficiency in electrodeposited CdS/CdTe solar cells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Annealing time and collection efficiency in electrodeposited CdS/CdTe solar cells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Annealing time and collection efficiency in electrodeposited CdS/CdTe solar cells
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *