Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T13:25:58.339Z Has data issue: false hasContentIssue false

Analysis of the Sublimation Growth Process of Silicon Carbide Bulk Crystals

Published online by Cambridge University Press:  15 February 2011

R. Eckstein
Affiliation:
Materials Science Department 6, University of Erlangen-Nürnberg, Martensstr. 7
D. Hofmann
Affiliation:
Materials Science Department 6, University of Erlangen-Nürnberg, Martensstr. 7
Y. Makarov
Affiliation:
Fluid Mechanics Institute, University of Erlangen-Nürnberg, Cauerstr. 4
St. G. Müller
Affiliation:
Materials Science Department 6, University of Erlangen-Nürnberg, Martensstr. 7
G. Pensl
Affiliation:
Applied Physics Institute, University Erlangen-Nürnberg, Staudtstr. 7, D-91058 Erlangen, Germany
E. Schmitt
Affiliation:
Materials Science Department 6, University of Erlangen-Nürnberg, Martensstr. 7
A. Winnacker
Affiliation:
Materials Science Department 6, University of Erlangen-Nürnberg, Martensstr. 7
Get access

Abstract

Experimental and numerical analysis have been performed on the sublimation growth process of SiC bulk crystals. Crystallographic, electrical and optical properties of the grown silicon carbide (SIC) crystals have been evaluated by various characterization techniques. Numerical models for the global simulation of SiC bulk growth including heat and mass transfer and chemical processes are applied and experimentally verified.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tsvetkov, V.F., Allen, S.T., Kong, H.S., Carter, C.H., Inst. Phys. Conf. Ser., IOP Publi- shing, Bristol (U.K.) 142, 17 (1996)Google Scholar
[2] Tuominen, M., Yakimova, R., Glass, R.C., Tuomi, T., Janzen, E., J. Crystal Growth 144, 267 (1994)Google Scholar
[3] Davis, R.F., Inst. Phys. Conf. Ser., IOP Publishing Ltd., Bristol (U.K.) 137, 1 (1994)Google Scholar
[4] Wang, S., Dudley, M., Carter, C. Jr., Asbury, D., Fazi, C. in Applications of Synchroton Radiation Techniques to Materials Science edited by Perry, D.L., Shinn, N.D., Stock-bauer, R.L., DAmico, K.L., Terminello, L.J. (Mat. Res. Soc. Symp. Proc. 307, Pittsburgh, PA, 1993) 249 Google Scholar
[5] Barrett, D.L., McHugh, J.P., Hobgood, H.M., Hopkins, R.H., McMullin, P.G., Clarke, R.C., Choyke, W.J., J. Crystal Growth 128, 358 (1993)Google Scholar
[6] Hofmann, D., Heinze, M., Winnacker, A., Durst, F., Kadinski, L., Kaufmann, P., Makarov, Y., Schäfer, M., J. Crystal Growth 146, 214 (1995)Google Scholar
[7] Garcon, L., Rouault, A., Anikin, M., Jaussaud, C., Madar, R., Materials Science and Engi- neerimg B 29, 90 (1995)Google Scholar
[8] Vodakov, Y.A., Mokhov, E.N., Ramm, M.G., Roenkov, A.D., Crystal Research and Tech- nology 14, 729 (1979)Google Scholar
[9] Tairov, Y.M., Tsvetkov, V.F., Lilov, S.K., Safaraliev, G.K., J. Crystal Growth 36, 147 (1976)Google Scholar
[10] Kaneko, T., J. Crystal Growth 128, 354 (1993)Google Scholar
[11] Müller, G., Ostrogorsky, A., Convection in Melt Growth, Handbook of Crystal Growth 2, 709 edited by Hurle, D.T.J. (Elsevier Science Publ., Amsterdam 1994)Google Scholar
[12] Ziegler, G., Lanig, P., Theis, D., Weyerich, C., IEEE Transactions on Electron. Devices 30/4, 277 (1983)Google Scholar
[13] Tairov, Y.M., Materials Science and Engineering B 29, 83 (1995)Google Scholar
[14] Drowart, J., DeMaria, G., Inghram, M.G., J. Chem. Phys. 41, 1015 (1958)Google Scholar
[15] Holman, J.P., Heat Transfer, (McGraw-Hill, New York, 1986)Google Scholar
[16] Karpov, S.Y., Makarov, Y.N., Ramm, M.S., Inst. Phys. Conf. Ser., IOP Publishing, Bristol (U.K.) 142, 177 (1996)Google Scholar