Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-vl2kb Total loading time: 0.183 Render date: 2021-11-28T02:31:54.964Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Analysis of plasma for carbon nanotube growth by plasma-enhanced chemical vapor deposition

Published online by Cambridge University Press:  26 February 2011

Atsushi Ozeki
Affiliation:
ozeki@mars-ei.eng.hokudai.ac.jp, Hokkaido University, Japan
Yoshiyuki Suda
Affiliation:
suda@ist.hokudai.ac.jp, Hokkaido University, Japan
Atsushi Okita
Affiliation:
okita@mars-ei.eng.hokudai.ac.jp, Hokkaido University, Japan
Junji Nakamura
Affiliation:
nakamura@ims.tsukuba.ac.jp, University of Tsukuba, Japan
Akinori Oda
Affiliation:
aknr.oda@nitech.ac.jp, Nagoya Institute of Technology, Japan
Yosuke Sakai
Affiliation:
sakaiy@ist.hokudai.ac.jp, Hokkaido University, Japan
Hirotake Sugawara
Affiliation:
sugawara@ist.hokudai.ac.jp, Hokkaido University, Japan
Get access

Abstract

Optical emission spectra of a CH4/H2/Ar gas mixture plasma were observed during carbon nanotube (CNT) growth in RF plasma-enhanced chemical vapor deposition. CNTs with diameters of ∼10-30 nm and length of ∼6 μm were grown on double- and triple-layered films of catalyst/support materials (FexOy/TiO2 and Al2O3/FexOy/Al2O3) at the total gas pressures of 1-10 Torr with gas flow rates of CH4 = 27 sccm, H2 = 3 sccm, and Ar = 1 sccm. The number density of CNTs increased with the gas pressure, and Al2O3/FexOy/Al2O3 (each thickness of 1 nm) film yielded the thinnest CNTs with a high number density among the present catalysts. The spatial distributions of H atom relative density in the plasma were obtained by actinometry. The H relative density decreased with the pressure, and this suggests the suppression of CH3 radical generation in the plasma.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iijima, S., Nature 354, 147 (1991).CrossRefGoogle Scholar
2 Han, J., in Carbon Nanotubes: Science and Applications, edited by Meyyappan, M., (CRC Press LLC, Boca Raton, 2005), pp. 124.Google Scholar
3 Dai, H., Acc. Chem. Res. 35, 1035 (2002).CrossRefGoogle Scholar
4 Nihei, M., Horibe, M., Kawabata, A., and Awano, Y., Jpn. J. Appl. Phys. 43, 1856 (2004).CrossRefGoogle Scholar
5 Meyyappan, M., Delzeit, L., Cassell, A., and Hash, D., Plasma Sources Sci. Technol. 12, 205 (2003)CrossRefGoogle Scholar
6 Okita, A, Suda, Y., Oda, A., Ozeki, A., Nakamura, J., Sugawara, H., and Sakai, Y., J. Appl. Phys. (accepted for publication)Google Scholar
7 Kato, T., Jeong, G. H., Hirata, T., Hatakeyama, R., Tohji, K., and Motomiya, K., Chem. Phys. Lett. 381, 422 (2003).CrossRefGoogle Scholar
8 Denysenko, I. B., Xu, S., Long, J. D., Rutkevych, P. P., Azarenkov, N. A., and Ostrikov, K., J. Appl. Phys. 95, 2713 (2004).CrossRefGoogle Scholar
9 Cruden, B. A., Cassell, A. M., Hash, D. B., and Meyyappan, M., J. Appl. Phys. 96, 5284 (2004).CrossRefGoogle Scholar
10 Sato, S., Kawabata, A., Kondo, D., Nihei, M., and Awano, Y., Chem. Phys. Lett. 402, 149 (2005).CrossRefGoogle Scholar
11 Zhang, R. Y., Amlani, I., Baker, J., Tresek, J., and Tsui, R. K., Nano Lett. 3, 731 (2003).CrossRefGoogle Scholar
12 Zhong, G., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., and Kawarada, H., Chem. Vap. Deposition. 11, 127 (2005).Google Scholar
13 Delzeit, L., McAnich, I., Cruden, B. A., Hash, D., Chen, B., Han, J., and Meyyappan, M., J. Appl. Phys. 91, 6027 (2002).CrossRefGoogle Scholar
14 Cui, J., and Fang, R. C., J. Appl. Phys. 81, 2856 (1997).CrossRefGoogle Scholar
15 Pearse, R. W. B., and Gaydon, A. G., The identification of molecular spectra, 4th ed. (Chapman and Hall Ltd., London and New York, 1976) pp. 4118.Google Scholar
16 “NIST Atomic Spectra database”, http://physics.nist.gov/ Google Scholar
17 Coburn, J. W., and Chen, M., J. Appl. Phys. 51, 3134 (1980).CrossRefGoogle Scholar
18 Barshilia, H. C., and Vankar, V. D., J. Appl. Phys. 80, 3694 (1996).Google Scholar
19 Delzeit, L., Chen, B., Cassell, A., Stevens, R., Nguyen, C., and Meyyappan, M., Chem. Phys. Lett. 348, 368 (2001).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Analysis of plasma for carbon nanotube growth by plasma-enhanced chemical vapor deposition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Analysis of plasma for carbon nanotube growth by plasma-enhanced chemical vapor deposition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Analysis of plasma for carbon nanotube growth by plasma-enhanced chemical vapor deposition
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *