Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-18T16:14:47.661Z Has data issue: false hasContentIssue false

An Investigation of Radiation Damage Induced by Hydroxyl and Oxygen Impurities In BaF2 Crystal

Published online by Cambridge University Press:  21 February 2011

Chen Lingyan
Affiliation:
Department of Physics, Tongji University, Shanghai 200092, P. R. China
Gu Mu
Affiliation:
Department of Physics, Tongji University, Shanghai 200092, P. R. China
Wang Liming
Affiliation:
Department of Physics, Tongji University, Shanghai 200092, P. R. China
Xiang Kaiiiua
Affiliation:
Department of Physics, Tongji University, Shanghai 200092, P. R. China
Get access

Abstract

The radiation effect in hydrolyzed BaF2 was investigated through tile changes in their optical absorption and EPR spectra before and after γ-irradiation. The resulti demonstrated that hydroxyl and oxygen can be easily introduced into BaF2by means of a hydrolysis, the most likely modes are OH ions substituting for fluorine and O2– ions substituting for fluorine associated with charge-compensating fluorine vacancies O2–F+. Combining with the Hartree-Fock-Slater local-density discrete variational (HFS-Xα-DV) cluster calculation on some possible defects related to hydrogen and oxygen impurities, we propose that the radiation damage observed in hydrolyzedBaF2 can be explained in terms of OH and O2– — F+ dissociation through a radiolysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laval, M. et al. , Nucl. Instr. and Meth. 206 (1983) 169 Google Scholar
2. Woody, C. L. et al. , IEEE Nucl. Sci. Sym., Santa Fe, New Mexico, Nov. 5-8 (1991)Google Scholar
3. Li, P. J. et al. , J. Inorg. Mat. (China) 8 (1993) 15 Google Scholar
4. Meistrich, M. L., J. Phys. Chem. Solid 29 (1968) 1111 10.1016/0022-3697(68)90203-5Google Scholar
5. Gellermann, W. et al. , Phys. Status Solidi(a) 57 (1980) 411 Google Scholar
6. Kamikawa, T., Phys. Status Solidi (b) 68 (1975) 639 Google Scholar
7. Alekseev, P. D., Soviet Phys. Solid St. 22 (1980) 706 Google Scholar
8. Alekseev, P. D. et al. , Phys. Statua Solidi (b) K120 (1983) 119 10.1002/pssb.2221200244Google Scholar
9. Scacco, A. et al. , Rad. Eff. Lett. 76 (1982) 7 Google Scholar
10. Bill, H. et al. , Phys. Lett. 21 (1966) 257 10.1016/0031-9163(66)90802-XGoogle Scholar
11. Bill, H., Solid Stat. 'Commun. 9 (1971) 477 Google Scholar
12. Bill, H. et al. , Phys. Rev. B 10 (1974) 2697 10.1103/PhysRevB.10.2697Google Scholar
13. Deyhimi, F. et al. , J. Solid Stat. Chem. 43 (1982) 181 10.1016/0022-4596(82)90227-4Google Scholar
14. Bontinck, W., Physica 24 (1958) 650 Google Scholar
15. Nakata, R. et al. , J. Phys. Chem. Solid 40 (1979) 995 10.1016/0022-3697(79)90124-0Google Scholar
16. Kumar, B., J. Am. Ceram. Soc. 65 (1982) C176 Google Scholar
17. Pena, J. J. et al. , J. Phys. Chem. Solids 49 (1988) 273 Google Scholar
18. Elliot, R. J. et al. , Proc. R. Soc. A 289 (1965) 1 Google Scholar
19. Baerends, E. J. et al. , Chem. Phys. 2 (1973) 41 Google Scholar
20. Delley, B. et al. , Phys Rev. B 27 (1983) 2132 10.1103/PhysRevB.27.2132Google Scholar
21. Umrigar, Cyrus et al. , Phys Rev. B 21 (1980) 852 Google Scholar
22. Kohn, W. et al. , Phys Rev. A 140 (1965) 1133 10.1103/PhysRev.140.A1133Google Scholar
23. Averill, F. W. et al. , J. Chem. Phys. 59 (1973) 6412 10.1063/1.1680020Google Scholar
24. Ellis, D. E. et al. , Phys. Rev. B 2 (1970) 2887 Google Scholar
25. Rolfe, J., Phys. Rev. Lett. 1 (1958) 56 Google Scholar
26. Klein, M. V. et al. , Mat. Res. Bull. 3 (1968) 677 Google Scholar
27. Radzhabov, E. A., Phys Stat. Sol. B 136 (1986) K139 10.1002/pssb.2221360263Google Scholar