Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-bz2nd Total loading time: 0.635 Render date: 2021-07-24T22:02:15.589Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

An algorithm to determine the plastic properties of materials based on the loading data in single sharp indentation

Published online by Cambridge University Press:  01 February 2011

Akio Yonezu
Affiliation:
akio_yonezu831@hotmail.com, Osaka University, Mechanical Engineering, M1-222 2-1 Yamadaoka Suita, Osaka, 565-0871, Japan
Hiroyuki Hirakata
Affiliation:
hirakata@mech.eng.osaka-u.ac.jp, Osaka University, Mechanical Engineering, 2-1 Yamadaoka Suita, Osaka, 565-0871, Japan
Kohji Minoshima
Affiliation:
k-minoshima@mech.eng.osaka-u.ac.jp, Osaka University, Mechanical Engineering, 2-1 Yamadaoka Suita, Osaka, 565-0871, Japan
Get access

Abstract

We proposed a method to determine the plastic properties of bulk materials based on data of loading curvature in indentation curve with only one sharp indenter. This method uses the dimensional analysis to solve the representative stress and effective yield stress. Indentation unloading data is only used to select the unique solution from the calculated ones obtained from representative stress and effective yield stress. We applied the proposed method to four engineering metals on an experimental basis, to verify its effectiveness, as well as its superiority to the reported methods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1 Cheng, Y-T and Cheng, C-M, Journal of Applied Physics, Vol.84, pp.12841291, (1998).CrossRefGoogle Scholar
2 Cheng, Y-T and Cheng, C-M, Materials Science and Engineering, Vol.44, pp.91149, (2004).CrossRefGoogle Scholar
3 Dao, M., Chollacoop, N., Vliet, K. J. Van, Venkatesh, T. A. and Suresh, S., Acta Materialia, 49, pp.38993918 (2001).CrossRefGoogle Scholar
4 Bucaille, J. L., Stauss, S., Felder, E. and Michler, J., Acta Materialia, Vol.51, pp.16631678 (2003).CrossRefGoogle Scholar
5 Chen, X., Ogasawara, N., Zhao, M. and Chiba, N., Journal of Mechanical Physics of Solids, Vol.55–8, pp. 16181660 (2007)CrossRefGoogle Scholar
6 Tabor, D., “The Hardness of Metals”, Oxford Classic Texts, (1950)Google Scholar
7 Ogasawara, N., Chiba, N., Chen, Xi, Scripta Materialia, Vol.54, pp.6570 (2006).CrossRefGoogle Scholar
8 Kin, S.H., Lee, B.W., Choi, Y. and Kwon, D., Materials Science & Engineering A, Vol.415, pp.5965 (2006).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An algorithm to determine the plastic properties of materials based on the loading data in single sharp indentation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

An algorithm to determine the plastic properties of materials based on the loading data in single sharp indentation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

An algorithm to determine the plastic properties of materials based on the loading data in single sharp indentation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *