Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-dkqnh Total loading time: 0.144 Render date: 2021-10-20T01:34:34.020Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Amorphous Rare Earth-Transition Metal Alloys for Magneto-Optical Storage

Published online by Cambridge University Press:  10 February 2011

Richard J. Gambino*
Affiliation:
Department of Materials Science and Engineering State University of New York at Stony Brook Stony Brook, NY 11794-2275, RGAMBINO@ccmail.sunysb.edu
Get access

Abstract

Amorphous alloys of the heavy rare earth elements with cobalt and iron have magnetic and optical properties that make them ideally suited for magneto-optical mass storage media. These materials are used in all commercial erasable (MO) optical disk systems and in optically assisted magnetic storage such as the recordable music minidisk. The important properties of these materials for this application are: 1/ ferrimagnetic exchange with a magnetic compensation point near room temperature, 2/ perpendicular easy axis anisotropy when prepared under suitable conditions as thin films, 3/low media noise as compared to polycrystalline films, 4/low processing temperatures compatible with polymer substrates and 5/thermally stable when cycled repeatedly to the Curie temperature. The magneto-optical Kerr effect that is used to read the information off the disk is large at the 800 nm wavelength used in current devices but low at 400 nm. Since the areal storage density is set by the diffraction limit, improvements in shorter wavelength device performance are needed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Chaudhari, P., Cuomo, J. J. and Gambino, R. J., “Amorphous Metallic Films for Beam Addressable Applications,” Applied Phys. Lett. 22, 337 (1973). P. Chaudhari, J. J. Cuomo and R. J. Gambino, “Amorphous Metallic Films for Bubble Domain Applications,” IBM Journ. of Res. and Devel. 17, 66 (1973).10.1063/1.1654662CrossRefGoogle Scholar
[2] Gambino, R. J. and Fumagalli, P., “Magneto-Optic Properties of Macroscopic Ferrimagnets,” IEEE Trans. Mag. 30, 4461 (1994)10.1109/20.334121CrossRefGoogle Scholar
[3] Coey, J. M. D. and Readman, P. W., Nature, 246, 476 (1973);10.1038/246476a0CrossRefGoogle Scholar
Moorjani, K. and Coey, J. D., Magnetic Glasses. Elsevier, Amsterdam, 1984 Google Scholar
[4] Pickart, S. J., Rhyne, J. J. and Alperin, H. A., Phys. Rev. Lett. 33, 424 (1974)10.1103/PhysRevLett.33.424CrossRefGoogle Scholar
[5] Hiroyoshi, H. and Fukamichi, K., J. Appl. Phys. 53, 2226 (1982)10.1063/1.330779CrossRefGoogle Scholar
[6] Slater - Pauling Curves, see Bozorth, R. M., Ferromagnetism IEEE Press Classic Reissue, 1993 10.1109/9780470544624CrossRefGoogle Scholar
[7] Gambino, R. J. and McGuire, T. R., “Magneto-Optic Properties of Nd-Fe-Co Amorphous Alloys,” J. Appl. Phys. 57, 3906 (1985).10.1063/1.334911CrossRefGoogle Scholar
[8] Gambino, R. J. and McGuire, T. R., “Enhanced Magneto-Optic Properties of Light Rare Earth-Transition Metal Amorphous Alloys,” J. Mag. Magn. Mat. 54–57, 1365 (1986).10.1016/0304-8853(86)90859-0CrossRefGoogle Scholar
[9] Reim, W., Gambino, R. J., Ruf, R. R. and Plaskett, T. S., “TbxNdy(FeCo)1-x-y Promising Materials for Magneto-Optical Storage?”, J. Appl. Phys. 61, 3349 (1987).10.1063/1.338766CrossRefGoogle Scholar
[10] Gambino, R. J., Ruf, R. R. and Bojarczuk, N. A., “Macroscopic Ferrimagnets as Magneto-Optic Media”, J. Appl. Phys. (Abstract: only) 75, 6871 (1994) N. A. Bojarczuk, R. J. Gambino and R. R. Ruf, U.S. Patent 5612131: Composite magneto-optic memory and media.10.1063/1.356813CrossRefGoogle Scholar
[11] Gambino, R. J., “EuO/Tb-Fe-Co Exchange Coupled Films,” J. Magn. Soc. Japan 19 (Supplement No. S1), 17 (1995).10.3379/jmsjmag.19.S1_17CrossRefGoogle Scholar
[12] Gambino, R. J., Wang, J. and McGuire, T. R., “Magnetoresistance of Co-EuS Macroscopic Ferrimagnets”, IEEE Trans. Mag. 31, 3915 (1995)10.1109/20.489815CrossRefGoogle Scholar
[13] Chikazumi, S., Physics of Magnetism John Wiley, New York, 1964 Google Scholar
[14] Cargill, G. S. III, Gambino, R. J. and Cuomo, J. J., IEEE Trans. Mag. 10, 804 (1974)10.1109/TMAG.1974.1058397CrossRefGoogle Scholar
[15] Cargill, G. S. III, and Cochrane, R. W. in Amorphous Magnetism, Hooper, H. O. and de Graaf, A. M., Editors, Plenum, New York, 1972, pp. 313320 Google Scholar
[16] Cargill, G. S. III and Mizoguchi, T., J. Appl. Phys. 49, 1753 (1978), J. Appl. Phys. 50, 3570 (1979)10.1063/1.324857CrossRefGoogle Scholar
[17] Nèel, L., J. Phys. Radium, 15, 225 (1954)10.1051/jphysrad:01954001504022500CrossRefGoogle Scholar
[18] Taniguchi, S., Sci. Rep. Res. Inst. Tohoku Univ. A7, 269 (1955)Google Scholar
[19] Mizoguchi, T., in Diffraction Studies on Non-Crystalline Substances, Hargittai, I. and Orville-Thomas, W. J., Elsevier, Amsterdam, 1981 Google Scholar
[20] Yan, X., Hirscher, M., Egami, T. and Marinero, E. E., Phys. Rev. B., 43, 9300 (1991)10.1103/PhysRevB.43.9300CrossRefGoogle Scholar
[21] Harris, V. G., Aylesworth, K. D., Das, B. N.. Elam, W. T. and Koon, N. C., Phys. Rev. Letters, 69, 1939 (1992), V. G. Harris, K. D. Aylesworth, B. N. Das, W. T. Elam and N. C. Koon, IEEE Trans. Mag. 28, 2958 (1992)10.1103/PhysRevLett.69.1939CrossRefGoogle Scholar
[22] Huffiagel, T. C., Brennan, S., Zschack, P., and Clemens, B. M., paper AD-02, Intermag Conf, Seattle, Washington, 1996 Google Scholar
[23] Rhyne, J. J., Pickart, S. J. and Alperin, H. A., Phys. Rev. Lett. 29, 1562 (1972)10.1103/PhysRevLett.29.1562CrossRefGoogle Scholar
[24] Harris, R., Plischke, M. and Zuckermann, M. J., “New Model for Amorphous Magnetism”, Phys. Rev. Lett. 31, 160 (1973)10.1103/PhysRevLett.31.160CrossRefGoogle Scholar
[25] Hasegawa, R., Gambino, R. J., Cuomo, J. J. and Ziegler, J. F., “Effect of Thermal Annealing and Ion Radiation on the Coercivity of Amorphous GdCo Films,” J. App. Phys. 45, 4036 (1974).10.1063/1.1663908CrossRefGoogle Scholar
[26] Gambino, R. J., Ziegler, J. and Cuomo, J. J., “Effects of Ion Radiation Damage on the Magnetic Domain Structure of Amorphous Gd-Co Alloys,” Appl. Phys. Lett. 24, 99 (1974).10.1063/1.1655111CrossRefGoogle Scholar
[27] Mizoguchi, T., Gambino, R. J., Hammer, W. N. and Cuomo, J. J., Effects of Ion Implantation Damage on the Magnetic Properties of Amorphous GdCoMo Films,” IEEE Trans. Magnetics, MAG–13, 1618, (1977).CrossRefGoogle Scholar
[28] Katayama, T., Hasegawa, K., Kawanishi, K. and Tsushima, T., “Annealing Effects on Magnetic Properties of Amorphous GdCo, GdFe and GdCoMo Films”, J. Appi. Phys. 49, 1759 (1978)10.1063/1.324859CrossRefGoogle Scholar
[29] Luborsky, F. E., “Kinetics for Changes in Anisotropy Coercivity and Argon Content of Transition Metal - Rare Earth Films”, J. Appl. Phys. 57, 3592 (1985)10.1063/1.335016CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Amorphous Rare Earth-Transition Metal Alloys for Magneto-Optical Storage
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Amorphous Rare Earth-Transition Metal Alloys for Magneto-Optical Storage
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Amorphous Rare Earth-Transition Metal Alloys for Magneto-Optical Storage
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *