Hostname: page-component-7d8f8d645b-h5t26 Total loading time: 0 Render date: 2023-05-28T21:11:34.028Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Amorphous Phase Formation and Reactions AT Pt/GaAs Interfaces

Published online by Cambridge University Press:  26 July 2012

Dae-Hong Ko
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Robert Sinclair
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Get access


The amorphous phase formation and initial crystalline reactions at Pt/GaAs interfaces has been investigated via high-resolution electron microscopy (HREM), microdiffraction, and energy dispersive spectroscopy (EDS). A thin amorphous intermixed layer consisting of three elements, platinum, gallium, and arsenic was observed at Pt/GaAs interface in an as-deposited sample. This interlayer grew to 4.5nm in an amorphous state upon low temperature(e.g. 200°C) annealing by a solid-state amorphization reaction. Following the growth of the amorphous interlayer, subsequently, Pt3Ga and PtAs2 phases nucleated within the amorphous layer and grew at the Pt and GaAs sides, respectively. We also observed the same reaction processes with in-situ annealing HRTEM.

Research Article
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1. Walser, R. M. and Bene, R. W., Appl. Phys. Lett. 28, 624 (1976).CrossRefGoogle Scholar
2. Hiraki, A., Surface Science Reports 3, 357 (1984).Google Scholar
3. Holloway, K. and Sinclair, R., J. Less-Common Metals 140, 139 (1988).CrossRefGoogle Scholar
4. Holloway, K., Sinclair, R. and Nathan, M., J. Vac. Sci. Techn. A7, 1479 (1989).CrossRefGoogle Scholar
5. Sinclair, R., Holloway, K., Kim, K. B., Ko, D. H., Bhansali, A.S., Schwartzman, A. F. and Ogawa, S., Inst. Phys. Conf. Ser. 100, 599 (1989).Google Scholar
6. Sinclair, R., Mater. Trans. Jpn. Inst. Met., 31, 628 (1990).Google Scholar
7. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
8. Silverman, J., Pellegrini, P., Comer, J., Golvbovic, A., Weeks, M., Mooney, J., and Fitzgerald, J., Mat. Res. Soc. Proc., 54, 515 (1986).CrossRefGoogle Scholar
9. Ogawa, S., Yoshida, T., Kouzaki, T., and Sinclair, R., J. Appl. Phys., in press (1991).Google Scholar
10. Kim, K. B., Kniffin, M., Sinclair, R., and Helms, C. R., J. Vac. Sci. Techn. A6, 1473 (1988).Google Scholar
11. Sands, T., Chang, C. C., Kaplan, A. S., and Keramidas, V. G.. Krishnan, K. M., and Washburn, J., Appl. Phys. Lett. 50, 1346(1987).CrossRefGoogle Scholar
12. Caron-Popowich, R., Washburn, J., Sands, T., and Kaplan, A. S., J. Appl. Phys. 64, 4909 (1988).Google Scholar
13. Shiau, F. Y. and Chang, Y. A., Appl. Phys. Lett. 55, 1510 (1989).CrossRefGoogle Scholar
14. Fontaine, C., Okumura, T., and Tu, K. N., J. Appl. Phys. 54, 1404 (1983).CrossRefGoogle Scholar
15. Sinha, A.K. and Poate, J.M., in Thin Films-Interdiffusion and Reactions, edited by Mayer, J.W. (Wiley, New York, 1978), p. 418 Google Scholar
16. Sands, T., Keramidas, V. G., Yu, A. J., Yu, K-M., Gronsky, R., and Washburn, J., J. Mater. Res. 2, 262 (1987).CrossRefGoogle Scholar