Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-j4m62 Total loading time: 0.655 Render date: 2021-05-08T11:37:53.710Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Ambient Temperature Alkali Metal Transfer in Hydrocarbons - A New Route to Intercalation Compounds and Alloys

Published online by Cambridge University Press:  15 February 2011

J.O. Besenhard
Affiliation:
Inorganic Chemistry Institute, Technical University of Munich, Lichtenbergstr. 4, D-8046 Garching, West Germany
I. Kain
Affiliation:
Inorganic Chemistry Institute, Technical University of Munich, Lichtenbergstr. 4, D-8046 Garching, West Germany
H.-F. Klein
Affiliation:
Inorganic Chemistry Institute, Technical University of Munich, Lichtenbergstr. 4, D-8046 Garching, West Germany
H. MöHwald
Affiliation:
Inorganic Chemistry Institute, Technical University of Munich, Lichtenbergstr. 4, D-8046 Garching, West Germany
H. Witty
Affiliation:
Inorganic Chemistry Institute, Technical University of Munich, Lichtenbergstr. 4, D-8046 Garching, West Germany
Get access

Abstract

Dissolved cobalt(0) complexes of the type [L3L'Co] (L = phosphanes, e.g. PMe3, L' = olefins, e.g. C2H4) are reversibly reduced by alkali metals A (A = Li, K, Rb, Cs)

n[L3L'Co] + A ⇋ A[L3L'Co]

and hence can be used as A-carriers. These carrier complexes A[L3L'Co]n are even soluble in apolar solvents like pentane.

Action of [L3L'Co] plus A in pentane solution on graphite yields binary intercalation compounds ACn. By contrast, conventional ambient temperature A-transfer reagents (e.g. solutions of A in naphthalene-ether or in NH3) require strongly polar solvents and yield ternary intercalation compounds A(solv)yCn.

The “reducing power” of the alkali cobaltates is close to that of free A: alkali-rich phases like 1st stage KC8 or LiC6 or highly doped polyacetylenes (e.g. K(CH)5) are readily prepared. If intercalation of solvated species is unlikely, the A-transfer reactions may also be performed in polar solvents like ethers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Rüdorff, W., Chimla 19, 489 (1965).Google Scholar
2. Ginderow, D. and Setton, R., Carbon 6, 81 (1968).CrossRefGoogle Scholar
3. Rashkov, I.B., Panayotov, I.M. and Shishkova, V.C., Carbon 17, 103 (1979).CrossRefGoogle Scholar
4. Dye, J.L., DeBacker, M.G. and Nicely, V.A., J. Amer. Chem. Soc. 92, 5226 (1970).CrossRefGoogle Scholar
5. Kaempf, B., Raynal, S., Collet, A., Schué, F., Boileau, S. and Lehn, J.M., Angew. Chem. Int. Ed. Engl. 86, 611 (1974).CrossRefGoogle Scholar
6. Nominé, M. and Bonnetain, L., Acad, C. R.. Sci. Paris 264C, 2084 (1967).Google Scholar
7. Beguin, F., Setton, R., Hamwi, A. and Touzain, P., Mat. Sci. Eng. 40, 167 (1979).CrossRefGoogle Scholar
8. Hérold, A., Bull. Soc. chim. France 999 (1955).Google Scholar
9. Pfluger, P., Geiser, V., Stolz, S. and Güntherodt, H.-J., Synth. Met. 3, 27 (1981).CrossRefGoogle Scholar
10. Whittingham, M.S. and Dines, M.B., J. Electrochem. Soc. 124, 1387 (1977).CrossRefGoogle Scholar
11. Klein, H.-F., Hammer, R., Wenninger, J. and Gross, J. in: Catalysis in Chemistry and Biochemistry, Pullman, B. ed. (D. Reidel, Amsterdam 1979) p. 285.Google Scholar
12. Klein, H.-F., Gross, J. and Besenhard, J.O., Angew. Chem. Int. Ed. Engl. 92, 491 (1980).CrossRefGoogle Scholar
13. Besenhard, J.O., Klein, H.-F., Gross, J., Möhwald, H. and Nickl, J.J., Synth. Met. 4, 51 (1981).CrossRefGoogle Scholar
14. Klein, H.-F. and Karsch, H.H., Chem. Ber. 108, 944 (1975).CrossRefGoogle Scholar
15. Klein, H.-F., Schubert, U. and Witty, H., in preparation.Google Scholar
16. Klein, H.-F., Gross, J., Basset, J.-M. and Schubert, U., Z. Naturforsc. 35b, 614 (1980).CrossRefGoogle Scholar
17. Aronson, S., Salzano, F.J. and Bellafiore, D., J. Chem. Phys. 49, 434 (1968).CrossRefGoogle Scholar
18. James, S.D., J. Electrochem. Soc. 122, 921 (1975).CrossRefGoogle Scholar
19. Lagrange, P., Guérard, D. and Hbrold, A., Ann. Chim. Fr. 3, 143 (1978).Google Scholar
20. Rashkov, I., Merle, G., Mai, C., Gole, J. and Panayotov, I., Acad, C. R.. Sci. Paris 283C, 339 (1976).Google Scholar
21. Bonnetain, L., Touzain, P. and Hamwi, A., Mat. Sci. Eng. 31, 45 (1977).CrossRefGoogle Scholar
22. Beguin, F., Setton, R., Faccini, L., Legrand, A.P., Merle, G. and Mai, C., Synth. Met. 2, 161 (1980).CrossRefGoogle Scholar
23. Hérincks, C., Perret, R. and Ruland, W., Carbon 10, 711 (1972).CrossRefGoogle Scholar
24. Fialkov, A.S., Zhuikova, T.N., Kazmina, T.K., Savost'yanova, N.A. and Novikov, Y.N., Inorg. Mat. Engl. Transl. 14, 1432 (1978).Google Scholar
25. Sano, M., Sato, N., Inokuchi, H. and Tamura, S., Bull. Chem. Soc. Jpn. 54, 2610 (1981).CrossRefGoogle Scholar
26. Nigrey, P.J., Maclnnes, D. Jr., Nairns, D.P., MacDiarmid, A.G. and Heeger, A.J., J. Electrochem. Soc. 128, 1651 (1981).CrossRefGoogle Scholar
27. Chung, T.C., Feldblun, A., Heeger, A.J. and MacDiarmid, A.G., J. Chem. Phys. 74, 5504 (1981).CrossRefGoogle Scholar
28. Francois, B., Synth. Met. 4, 131 (1981).CrossRefGoogle Scholar
29. Koch, V.R., J. Electrochem. Soc. 126, 181 (1979).CrossRefGoogle Scholar
30. Dey, A.N. and Sullivan, B.P., J. Electrochem. Soc. 117, 222 (1970).CrossRefGoogle Scholar
31. Ito, T., Shirakawa, H. and Ikeda, S., J. Polym. Sci. Polym. Chem. Ed. 12, 11 (1974).CrossRefGoogle Scholar
32. Barin, I., Knacke, O. and Kubaschewski, O., Thermochemical Properties of Inorganic Substances, Supplement (Springer-Verlag, Berlin 1977).CrossRefGoogle Scholar
33. Besenhard, J.O. and Fritz, H.P., Electrochim. Acta 20, 513 (1975).CrossRefGoogle Scholar
34. Dey, A.N., J. Electrochem. Soc. 118, 1547 (1971).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ambient Temperature Alkali Metal Transfer in Hydrocarbons - A New Route to Intercalation Compounds and Alloys
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ambient Temperature Alkali Metal Transfer in Hydrocarbons - A New Route to Intercalation Compounds and Alloys
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ambient Temperature Alkali Metal Transfer in Hydrocarbons - A New Route to Intercalation Compounds and Alloys
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *