Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-jcwnq Total loading time: 0.213 Render date: 2021-10-18T15:05:15.560Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Advanced Functional Materials: Intrinsic and Doped Silicon Oxide

Published online by Cambridge University Press:  04 May 2015

Xiaodan Zhang*
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Bofei Liu
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Lisha Bai
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Fang jia
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Shuo Wang
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Qian Huang
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Jian Ni
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Changchun Wei
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Dekun Zhang
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Jian Sun
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Xinliang Chen
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Huizhi Ren
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Guofu Hou
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Shengzhi Xu
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Guangcai Wang
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
Ying Zhao
Affiliation:
Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
*
*Corresponding Author: xdzhang@nankai.edu.cn
Get access

Abstract

The unique properties of silicon oxide materials, no matter intrinsic or doped, utilized in thin film solar cells (TFSCs) in the area of photovoltaic (PV) are making TFSCs one of the most attractive photovoltaic technologies for the development of high-performing electricity production units to be integrated in everyday life. In comparison to other silicon materials, the particular diphasic structure of silicon oxide materials, in which hydrogenated microcrystalline silicon (μc-Si:H) crystallites are surrounded by an oxygen-rich hydrogenated amorphous silicon (a-Si:H) phase, causes them present excellent photoelectrical material properties, such as a low-parasitic absorption in the broadband spectral range, independent controllability of longitudinal and lateral conductivity, refractive indices (3.5-2.0), band gap (2.0-2.6 eV) and conductivity tenability (with orders of 1-10-9 S/cm) with oxygen doping, and so on. Various types of silicon oxide materials, including intrinsic, p- or n- type, further applied in TFSCs have also played significant roles in improving the efficiency of various types of single-, dual-, and triple-junction thin-film solar cells from both the optical and electrical points of view. In this paper, we present our latest progress in studying the performance improvement role of intrinsic or doped silicon oxide materials in pin-type a-Si:H, a-SiGe:H, and μc-Si:H single-junction solar cells. By effectively tuning the band gap values of intrinsic a-SiOx:H materials with oxygen doping and adopting the layers with a suitable band gap (1.86 eV) as the P/I buffer layers of a-Si:H solar cells fabricated on metal organic chemical vapor deposition (MOCVD) boron-doped zinc oxide (ZnO:B) substrates, a significant Voc increases up to 909 mV and an excellent external quantum efficiency (EQE) response of 75% at the 400 nm typical wavelength can be achieved by matching the band gap discontinuity between the p-type nc-SiOx:H window and a-Si:H intrinsic layers. The serious leakage current characteristics of pin-type narrow-gap (Eg<1.5 eV) a-SiGe:H single-junction solar cells can also be finely tuned by integrating an n-type μc-SiOx:H layer with a small oxygen content in addition to improving the long-wavelength response, an effective approach gives rise to the highest FF of 70.62% for pin-type a-SiGe:H single-junction solar cells with an average band gap of 1.48 eV. In addition, our studies proved that the application of p-type μc-SiOx:H window layers in μc-Si:H single-junction solar cells can effectively improve the short-wavelength light coupling by suppressing the parasitic absorption and promoting the anti-reflectivity with a graded refractive index profile. On the basis of the optimum single-junction solar cells with omnipotent silicon oxide materials, an initial efficiency of 16.07% has been achieved for pin-type a-Si:H/a-SiGe:H/μc-Si:H triple-junction solar cells with an active area of 0.25 cm2. The omnipotent properties of silicon oxide layers in TFSCs, including effective optical coupling and trapping, suitability in compensating for the band gap discontinuity, the shunt-quenching capacity, and so on, make them likely to be extended to other types of solar cells such as polycrystalline chalcopyrite Cu(In,Ga)Se2 (CIGS) and perovskite-sensitized solar cells, opening up new opportunities for acquiring solar cells with higher performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smirnov, V., Böttler, W., Lambertz, A., Wang, H., Carius, R. and Finger, F., Physica Status Solidi (c) 7, 1053(2010).
Zhang, X. D., Yue, Q., Zheng, X. X., Geng, X. H. and Zhao, Y., Thin Solid Films 520, 684 (2011).CrossRef
Yan, B., Yue, G., Sivec, L., Yang, J., Guha, S. and Jiang, C. S.. Applied Physics Letters 99, 113512 (2011).CrossRef
Despeisse, M., Bugnon, G., Feltrin, A., Stueckelberger, M., Cuony, P., Meillaud, F. and Ballif, C.., Applied Physics Letters 96, 073507 (2010).CrossRef
Fang, J., Chen, Z., Wang, N., Bai, L. S., Hou, G. F., Chen, X. L., Wei, C. C., Wang, G. C., Sun, J., Zhao, Y. and Zhang, X. D.. Solar Energy Materials and Solar Cells 128, 394 (2014).CrossRef
Liu, B.F., Bai, L. S., Zhang, X. D., Wei, C. C., Huang, Q., Sun, J., Ren, H. Z., Hou, G. F., and Zhao, Y.. Solar Energy Materials and Solar Cells, under review.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Advanced Functional Materials: Intrinsic and Doped Silicon Oxide
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Advanced Functional Materials: Intrinsic and Doped Silicon Oxide
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Advanced Functional Materials: Intrinsic and Doped Silicon Oxide
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *