Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-66nw2 Total loading time: 0.244 Render date: 2021-12-05T22:34:25.961Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Adsorption of Atmospheric Gases on Pu Surfaces

Published online by Cambridge University Press:  22 May 2012

A.J. Nelson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
K.S. Holliday
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
J.A. Stanford
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
W.K. Grant
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
R.G. Erler
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
P. Allen
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
W. McLean
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, U.S.A.
P. Roussel
Affiliation:
AWE Aldermaston, Reading, Berkshire RG7 4PR, U.K.
Get access

Abstract

Surface adsorption represents a competition between collision and scattering processes that depend on surface energy, surface structure and temperature. The surface reactivity of the actinides can add additional complexity due to radiological dissociation of the gas and electronic structure. Here we elucidate the chemical bonding of gas molecules adsorbed on Pu metal and oxide surfaces. Atmospheric gas reactions were studied at 190 and 300 K using x-ray photoelectron spectroscopy. Evolution of the Pu 4f and O 1s core-level states were studied as a function of gas dose rates to generate a set of Langmuir isotherms. Results show that the initial gas dose forms Pu2O3 on the Pu metal surface followed by the formation of PuO2 resulting in a layered oxide structure. This work represents the first steps in determining the activation energy for adsorption of various atmospheric gases on Pu.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Colmenares, C.A., Prog. Solid State Chem. 15, 257 (1984)CrossRefGoogle Scholar
2. Haschke, J.M., Allen, J.C., Morales, L.A., Los Alamos Sci. 26, 253 (2000)Google Scholar
3. Butterfield, M.T., Durakiewicz, T., Guziewicz, E., Joyce, J.J., Arko, A.J., Graham, K.S., Moore, D.P., Morales, L.A., Surf. Sci. 571, 74 (2004)CrossRefGoogle Scholar
4. Garcia Flores, H.G., Roussel, P., Moore, D.P., Pugmire, D.L., Surf. Sci. 605, 314 (2011)CrossRefGoogle Scholar
5. Almeida, T., Cox, L.E., Ward, J.W., Naegele, J.R., Surf. Sci. 287/288, 141 (1993)CrossRefGoogle Scholar
6. Cabrera, N., Mott, N.F., Rept. Progr. Phys. 12, 163 (1949)CrossRefGoogle Scholar
7. Fehlner, F.P., Mott, N.F., Oxidation of Metals 2, 59 (1970)CrossRefGoogle Scholar
8. Ocal, C., Ferrer, S., Garcia, N., Surf. Sci. 163, 335 (1985)CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Adsorption of Atmospheric Gases on Pu Surfaces
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Adsorption of Atmospheric Gases on Pu Surfaces
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Adsorption of Atmospheric Gases on Pu Surfaces
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *