Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-85hf2 Total loading time: 0.147 Render date: 2021-09-27T08:10:01.181Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

3D-printing of Urethane-based Photoelastomers for Vascular Tissue Regeneration

Published online by Cambridge University Press:  31 January 2011

Stefan Baudis
Affiliation:
stefan.baudis@ias.tuwien.ac.at, Vienna University of Technology, Institute of Applied Synthetic Chemistry - Division Macromolecular Chemistry, Vienna, Austria
Thomas Pulka
Affiliation:
TGM Vienna, Wexstrasse 19-23, 1200 Vienna, Austria
Bernhard Steyrer
Affiliation:
TGM Vienna, Wexstrasse 19-23, 1200 Vienna, Austria
Harald Wilhelm
Affiliation:
harald.wilhelm@tgm.ac.at, TGM, Vienna, Austria
Guenter Weigel
Affiliation:
guenter.weigel@meduniwien.ac.at, Ludwig-Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
Helga Bergmeister
Affiliation:
helga.bergmeister@meduniwien.ac.at, Medical University of Vienna, Division of Biomedical Research, Vienna, Austria
Juergen Stampfl
Affiliation:
juergen.stampfl@tuwien.ac.at, Vienna University of Technology, Institute of Materials Science and Technology, Vienna, Austria
Robert Liska
Affiliation:
robert.liska@tuwien.ac.at, Vienna University of Technology, Institute of Applied Synthetic Chemistry - Division Macromolecular Chemistry, Vienna, Austria
Get access

Abstract

The mechanical properties of materials designated for vascular tissue replacement are of crucial importance. The elastic modulus, the tensile strength as well as the suture tear resistance have to be adjusted. Our approach is to use photopolymers for artificial vascular grafts. Via the layer-by-layer photopolymerization of suitable resin formulations as performed in additive manufacturing (AM) very complex structures are realizable. Hence AM offer the possibility to create cellular structures within the artificial grafts that might favor the ingrowth of new tissue. Commercially available urethane acrylates (UA) were chosen as base monomers since urethane groups are known to have good cell-adhesion behavior and poly-UAs show adequate mechanical performance. The mechanical properties of the photoelastomers can be tailored by addition of reactive diluents (e.g. 2-hydroxyethyl acrylate, HEA) and thiols (e.g. 3,6 dioxa-1,8-octane-dithiol) as chain transfer agents to comply with the mechanical properties of natural blood vessels. To examine the suture tear resistance a new testing method has been developed. Finally, a formulation containing 30 wt% UA and 70 wt% HEA complies with the mechanical properties of natural blood vessels, shows good biocompatibility in in-vitro tests and was successfully 3D-printed with digital light processing AM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Shalaby, S. W. and Burg, K. J. L. “Absorbable and Biodegradable Polymers,” in Advances in Polymeric Biomaterials Boca Raton; London; New York; Washington, D.C.: CRC press, 2004, pp. 175.Google Scholar
2 Chandra, R. and Rustgi, R. Progress in Polymer Science 23, 1273 (1998).CrossRefGoogle Scholar
3 Stampfl, J. Baudis, S. Heller, C. Liska, R. Neumeister, A. Kling, R. Ostendorf, A. and Spitzbart, M. Journal of Micromechanics and Microengineering 18, 125014 (2008).CrossRefGoogle Scholar
4 Liska, R. Schwager, F. Maier, C. Cano-Vives, R., and Stampfl, J. Journal of Applied Polymer Science 97, 2286 (2005).CrossRefGoogle Scholar
5 Schuster, M. Turecek, C. Kaiser, B. Stampfl, J. Liska, R. and Varga, F. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 44, 547 (2007).CrossRefGoogle Scholar
6 Schuster, M. Turecek, C. Mateos, A. Stampfl, J. Liska, R. and Varga, F. Monatshefte fuer Chemie 138, 261 (2007).CrossRefGoogle Scholar
7 Schuster, M. Turecek, C. Varga, F. Lichtenegger, H. Stampfl, J. and Liska, R. Applied Surface Science 254, 1131 (2007).CrossRefGoogle Scholar
8 Baudis, S. Heller, C. Liska, R. Stampfl, J. Bergmeister, H. and Weigel, G. Journal of Polymer Science, Part A: Polymer Chemistry 47, 2664 (2009).CrossRefGoogle Scholar
9 Senyurt, A. F. Wei, H. Phillips, B. Cole, M. Nazarenko, S. Hoyle, C. E. Piland, S. G. and Gould, T. E. Macromolecules 39, 6315 (2006).CrossRefGoogle Scholar
10 Hoyle, C. E. Lee, T. Y. and Roper, T. M. Journal of Polymer Science Part A: Polymer Chemistry 42, 5301 (2004).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

3D-printing of Urethane-based Photoelastomers for Vascular Tissue Regeneration
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

3D-printing of Urethane-based Photoelastomers for Vascular Tissue Regeneration
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

3D-printing of Urethane-based Photoelastomers for Vascular Tissue Regeneration
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *