Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T20:27:44.092Z Has data issue: false hasContentIssue false

3C-SiC Monocrystals Grown on Undulant Si(001) Substrates

Published online by Cambridge University Press:  11 February 2011

Hiroyuki Nagasawa
Affiliation:
Hoya Advanced Semiconductor Technologies Co., Ltd. 1–17–16 Tanashioda, Sagamihara, Kanagawa 229–1125, Japan
Kuniaki Yagi
Affiliation:
Hoya Advanced Semiconductor Technologies Co., Ltd. 1–17–16 Tanashioda, Sagamihara, Kanagawa 229–1125, Japan
Takamitsu Kawahara
Affiliation:
Hoya Advanced Semiconductor Technologies Co., Ltd. 1–17–16 Tanashioda, Sagamihara, Kanagawa 229–1125, Japan
Naoki Hatta
Affiliation:
Hoya Advanced Semiconductor Technologies Co., Ltd. 1–17–16 Tanashioda, Sagamihara, Kanagawa 229–1125, Japan
Get access

Abstract

A novel technique to reduce planar defects in 3C-SiC is to grow it on “undulant-Si” substrates, on which the surface forms countered slopes oriented in the [110] and [110] directions. In the initial stage of 3C-SiC growth, step flow epitaxy occurs on each slope of the substrate, reducing the anti-phase boundaries. Then, the stacking faults in the (111) and (111) planes are gradually annihilated by combining with counter-stacking faults, while those parallel to (111) and (111) vanish. The freestanding 3C-SiC exhibits anisotropy in its electrical properties. The origin of the anisotropy in electrical properties is discussed by referring to the results of X-ray diffraction study.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nelson, W.E., Halden, F.A. and Rosengreen, A., J. Appl. Phys. 37, 333 (1966).Google Scholar
2. Long, N.N., Nedzvetskii, D.S., Prokofeva, N.K. and Riefman, M.B., Opt. Spectrosc. 29, 388 (1970).Google Scholar
3. Pensl, G., Bassler, M., Ciobanu, F., Afanas'ev, V., Yano, H., Kimoto, T. and Matsunami, H., Mat. Res. Soc. Symp. Proc. 640, H3.2 (2001).Google Scholar
4. Nagasawa, H. and Yagi, K., Phys. Stat. Sol.(b) 202, 335 (1997).Google Scholar
5. Fleischman, A.J., Zorman, C.A., Mehregany, M., Jacob, C., Nishino, S. and Pirouz, P., Inst. Phys. Conf. Ser. No. 142, 197 (Paper presented at Silicon Carbide and Related Materials 1995 Conf., Kyoto, Japan).Google Scholar
6. Iwata, H., Lindefelt, U., Oberg, S., Briddon, P., Mater. Sci. Forum, 389–393, 439 (2002).Google Scholar
7. Irokawa, Y., Kodama, M. and Kachi, T., J. Electrochem. Soc. 148, G680 (2001).Google Scholar
8. Kordina, O., Bjorketun, L.-O., Henry, A., Hallin, C., Glass, R.C., Hultman, L., Sundgren, J.-E. and Janzen, E., J. Cryst. Growth 154, 303 (1995).Google Scholar
9. Jayatirtha, H.N., Spencer, M.G., Taylor, C., Greg, W., J. Cryst. Growth, 174, 662 (1997).Google Scholar
10. Lambrecht, W. and Segall, B., Phys. Rev. B41, 2948 (1990).Google Scholar
11. Shibahara, K., Nishino, S. and Matsunami, H., J. Cryst. Growth, 78, 538 (1986).Google Scholar
12. Nagasawa, H., Yagi, K. and Kawahara, T., J. Cryst. Growth, 237–239, 1244 (2002).Google Scholar
13. Iwata, H., Lindefelt, U., Oberq, S. and Briddon, P.R., Presented at ECSCRM2002 Linkoping, Sweden, 2002 (to be published in Matr. Sci. Forum, 2003).Google Scholar
14. Hatta, N., Yagi, K., Kawahara, T. and Nagasawa, H., Presented at ECSCRM2002 Linkoping, Sweden, 2002 (to be published in Matr. Sci. Forum, 2003).Google Scholar
15. Nagasawa, H., Kawahara, T., Yagi, K., Matr. Sci. Forum, 389–393, 319 (2002).Google Scholar