Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-2qt69 Total loading time: 0.255 Render date: 2022-08-19T12:35:46.509Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

3.2 AND 3.8 μm Emission and Lasing in AlGaAsSb/InGaAsSb Double Heterostructures with Asymmetric Band Offset Confinements

Published online by Cambridge University Press:  10 February 2011

M. P. Mikhailova
Affiliation:
Ioffe Physico-Technical Institute, RAS, 194021, St.Petersburg, Russia
B. E. Zhurtanov
Affiliation:
Ioffe Physico-Technical Institute, RAS, 194021, St.Petersburg, Russia
K. D. Moiseev
Affiliation:
Ioffe Physico-Technical Institute, RAS, 194021, St.Petersburg, Russia
A. N. Imenkov
Affiliation:
Ioffe Physico-Technical Institute, RAS, 194021, St.Petersburg, Russia
O. G. Ershov
Affiliation:
Ioffe Physico-Technical Institute, RAS, 194021, St.Petersburg, Russia
Yu. P. Yakovlev
Affiliation:
Ioffe Physico-Technical Institute, RAS, 194021, St.Petersburg, Russia
Get access

Abstract

We report the first observations of electroluminescence (EL) and lasing in laser structures with high Al-content (x=0.64, Eg=1.474 eV) cladding layers and a narrow-gap InGaAsSb active layer (Eg=0.326 eV at T=77K). The structures are LPE-grown lattice-matched to GaSb substrate. Band energy diagrams of the laser structures had strongly asymmetric band offsets. The heterojunction between high Al-content layer and InGaAsSb narrow-gap active layer has a type II broken-gap alignment at 300K. In this laser structure spontaneous emission was obtained at λ=3.8μm at T=77K and λ=4.25 μm at T=300K. Full width at half maximum (FWHM) of emission band was 34 meV. Emission intensity decreased by a factor of 30 from T=77K to 300K. Lasing with single dominant mode was achieved at λ=3.774 μm (T=80K) in pulsed mode. Threshold current as low as 60 mA and characteristic temperature T0=26K were obtained at T=80–120K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Choi, H.K., Turner, G.W. Appl.Phys.Lett. 67, 332 (1995)CrossRefGoogle Scholar
2. Danilova, T.N., Imenkov, A.N., Ershov, O.G., Stepanov, M V., Sherstnev, V.V., Yakovlev, Yu.P. Semiconductors, 29 (7), 667 (1995)Google Scholar
3. Choi, H.K., Turner, G.W., Eglash, S.Y. IEEE Photonics Technol. Lett., 6, 7 (1994)CrossRefGoogle Scholar
4. Yakovlev, Yu.P., Mikhailova, M.P., Zegrya, G.G., Moiseev, K.D., Ershov, O.G. Techn.Digest CLEO-96, USA, Anaheim CA, 2–7 June 1996, p. 170 Google Scholar
5. Choi, H.K., Tumer, G.W., Liau, Z.L. Appl.Phys.Lett. 65, 2251 (1994)CrossRefGoogle Scholar
6. Kazarinov, R.I., Belenky, G.L. IEEE J.Quant.Electr., 31 423 (1995)CrossRefGoogle Scholar
7. Wong, K.B., Gopir, G.K.A., Hagon, Y.P., Yaros, M. Semicond.Sci.Technol., 9, 2210 (1994)CrossRefGoogle Scholar
8. Mikhailova, M.P., Andreev, I.A., Voronina, T.I., Lagunova, T.S., Moiseev, K.D., Yakovlev, Yu.P. Semiconductors, 29 (4), 353 (1995)Google Scholar
9. Mikhailova, M.P., Moiseev, K.D., Zegrya, G.G., Yakovlev, Yu.P. Solid State Electr. 40 (8), 673 (1996)CrossRefGoogle Scholar
10. Ideshita, S., Furukawa, A., Mochizuki, Y., Mizuta, M. Appl.Phys.Lett. 60, 2549 (1992)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

3.2 AND 3.8 μm Emission and Lasing in AlGaAsSb/InGaAsSb Double Heterostructures with Asymmetric Band Offset Confinements
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

3.2 AND 3.8 μm Emission and Lasing in AlGaAsSb/InGaAsSb Double Heterostructures with Asymmetric Band Offset Confinements
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

3.2 AND 3.8 μm Emission and Lasing in AlGaAsSb/InGaAsSb Double Heterostructures with Asymmetric Band Offset Confinements
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *