Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T03:30:10.923Z Has data issue: false hasContentIssue false

Abnormal Grain Growth Behavior in Nanostructured Al Thin Films on SiO2/Si Substrates

Published online by Cambridge University Press:  01 February 2011

Flavia Piegas Luce
Affiliation:
flavia.luce@ufrgs.br, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Paulo Fichtner
Affiliation:
fichtner@if.ufrgs.br, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Luiz Fernando Schelp
Affiliation:
schelp@smail.ufsm.br, Universidade Federal de Santa Maria, Santa Maria, Brazil
Fernando Zawislak
Affiliation:
zawislak@if.ufrgs.br, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Get access

Abstract

We report on the formation of nanocrystalline Al thin films (180 nm thick) via magnetron sputtering technique using a step-wise deposition concept where columnar growth is inhibited, giving place to the development of a nanocrystalline mosaic grain arrangement with characteristic diameters of ≈ 30 nm and small size dispersion. The thermal evolution of the grain size distributions is investigated by transmission electron microscopy (TEM) in samples annealed in high vacuum for 3600 s. For the temperature range 300 ≤ T ≤ 462 °C the system presents a 3-D regular growth behavior up to sizes ≈ 70 nm. For T = 475 °C a rather sharp transition from normal to abnormal grain growth occurs. The grains extend to the film thickness and present mean lateral dimensions of ≈ 1000 nm. The observed phenomenon is discussed in terms of a synergetic grain boundary mobility effect caused by the characteristics of the initial nanogranular grain boundary morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tu, K. N.; J. Appl. Phys. 94 (2003) 5451.Google Scholar
2. Veprek, S., Veprek-Heijman, M. G. J., Karvankova, P., Prochazka, J.; Thin Solid Films, 476 (2005) 1.Google Scholar
3. Porter, D. A., Easterling, K. E.; Phase Transformation in Metals and Alloys, 2 ed., London: Chapman & Hall, 1992, pp. 110184.Google Scholar
4. Ma, F., Zhang, J-M., Xu, K-W.; Appl.Surf. Sci. 242 (2005) 55.Google Scholar
5. Rios, P. R.; Scripta Mater. 40, 6 (1999) 665.Google Scholar
6. Upmanyu, M., Srolovitz, D. J., Shvindlerman, L. S. and Gottstein, G., Acta Matererialia 47 (1999) 3901.Google Scholar
7. Zhou, L., Zhang, H., Srolovitz, D. J., Acta Materialia 53 (2005) 5273.Google Scholar