Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T09:56:11.625Z Has data issue: false hasContentIssue false

Ablation of Single Crystal MgO by UV Excimer Irradiation

Published online by Cambridge University Press:  25 February 2011

R. L. Webb
Affiliation:
Washington State University, Pullman, WA 99164-2814
L. C. Jensen
Affiliation:
Washington State University, Pullman, WA 99164-2814
S. C. Langford
Affiliation:
Washington State University, Pullman, WA 99164-2814
J. T. Dickinson
Affiliation:
Washington State University, Pullman, WA 99164-2814
Get access

Abstract

The ablation of single crystal MgO irradiated with 248 nm excimer laser light is studied by means of time resolved spectroscopy and quadrupole mass spectrometry. Luminescence spectra and SEM observations indicate that repeated laser bombardment gradually increases the density of potentially absorbing defects. In polished samples, this progressive growth is preceded by an initial clean-up (reduction) of surface damage. Unlike many wide band gap materials, defect production in MgO by electronic mechanisms is not likely. Chemical etch techniques indicate the presence of high dislocation densities in regions etched by the laser, suggesting that point defect production by dislocation motion is important. The ablation plume is composed of charged particles, including cluster ions, as well as a high density of excited neutrals. The growth of the plume with repeated bombardment correlates with defect formation as indicated by luminescence intensities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eschbach, P. A., Dickinson, J. T., Langford, S. C., and Pederson, L. R., J. Vac. Sci. Technol. A 7, 2943 (1989).Google Scholar
2. Eschbach, P. A., Dickinson, J. T., and Pederson, L. R., MRS Symp. Proc. 129, 385, (1989).CrossRefGoogle Scholar
3. Epifanov, A. S., Zh. Eksp. Teor. Fiz. 67, 1805 (1974) [Sov. Phys.-JETP 40, 897 (1975)].Google Scholar
4. Jones, S. C., Braunlich, P., Casper, R. T., Shen, X.-A., and Kelly, P., Optical Eng. 28, 1039, (1989).Google Scholar
5. Itoh, N., Adv. Phys. 31, 491, (1982).Google Scholar
6. Youngman, R. A., Hobbs, L. W., and Mitchell, T. E., J. Phys. (Paris) 41, C6227 (1980).Google Scholar
7. Craig, J. H. and Hock, J. L., J. Vac. Sci. Technol. 12, 1360, (1980).Google Scholar
8. Rosenblatt, G. H., Rowe, M. W., Williams, G. P. Jr, Williams, R. T., and Chen, Y., Phys. Rev. B 39, 10309, (1989).Google Scholar
9. Andreev, G. A. and Smirnov, B. I, Fiz. Tverd. Tela 10, 16931698 (1968) [Soy. Phys. Solid State 1D, 1336 (1968)].Google Scholar
10. Chen, Y., Abraham, M. M., Turner, T. J., and Nelson, C. M., Philos. Mag (Series 8) 32, 99, (1975).CrossRefGoogle Scholar
11 Forwood, C. T. and Lawn, B. R., Philos. Mag., Series 8, 13, 595, (1966).Google Scholar
12. Hull, D. and Bacon, D. J., Introduction to Dislocations, 3rd Edition, (Pergamon Press, Oxford, 1984), pp. 143147.Google Scholar
13. Stokes, R. J., Johnston, T. L., and Li, C. H., Trans. Metall. Soc. AIME 215, 437, (1959).Google Scholar
14. Saunders, W. A., Phys. Rev. B 37, 6583, (1988).CrossRefGoogle Scholar
15. Ziemann, P. J. and Castleman, A. W. Jr, J. Chem. Phys. 94, 718, (1991).Google Scholar
16. Yang, Y. A., Xia, P., Junkin, A. L., and Bloomfield, L. A., Phys. Rev. Lett. 66, 1205, (1991).Google Scholar
17. Webb, R. L., Jensen, L. C., Langford, S. C., and Dickinson, J. T., manuscript in preparation.Google Scholar