Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T09:14:37.135Z Has data issue: false hasContentIssue false

Ab initio study of CPP transport in Fe/Cr/Fe trilayers: influence of transition metal impurities

Published online by Cambridge University Press:  10 February 2011

Heike C. Herper
Affiliation:
Gerhard-Mercator University, Dept of Theoretical Physics, Lotharstr. 1, D-47048 Duisburg, Germany
Peter Entel
Affiliation:
Gerhard-Mercator University, Dept of Theoretical Physics, Lotharstr. 1, D-47048 Duisburg, Germany
Laszlo Szunyogh
Affiliation:
Budapest University, Dept of Theoretical Physics Budafoki út 8, H-1521 Budapest, Hungary
Peter Weinberger
Affiliation:
Center for Computational Materials Science, TU-Vienna, Gumpendorferstr. 1a, A-1060 Vienna, Austria
Get access

Abstract

The transport properties of Fe(001)/Cr/Fe(001) trilayers are discussed with respect to the influence of transition metal impurities in form of layers. We are able to show that the periodicity of the giant magnetoresistance is directly influenced by the interlayer exchange coupling (IEC). Furthermore, it is observed that the behavior of the IEC strongly depends on whether an impurity overlayer of Mn or V is used. It turns out that the size of the GMR is only little effected by 3d-transition metal impurities, which is in agreement with the experimental findings. The electronic and magnetic properties of the trilayers have been investigated within the fully relativistic, spin-polarized SKKR method and the LDA. The transport properties of the Fe/Cr/Fe systems have been derived from the fully relativistic spin-polarized Kubo-Greenwood equation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M. N., Broto, J. M., Fert, A., Dau, F. N. V., and Petroff, F., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2. Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B., and Sowers, H., Phys. Rev. Lett. 57, 2442 (1986).Google Scholar
3. Krebs, J. J., Lubitz, P., Chaiken, A., and Prinz, G. A., Phys. Rev. Lett. 63, 1645 (1989).Google Scholar
4. Parkin, S. S. P., More, N., and Roche, K. P., Phys. Rev. Lett. 64, 2304 (1990).Google Scholar
5. Cyrille, M. C. et al., Phys. Rev. B 62, 3361 (2000).Google Scholar
6. Vernes, A. et al., Phil. Mag. B 82, 85 (2002).Google Scholar
7. Heinrich, B., Cochran, J. F., Monchesky, T., and Urban, R., Phys. Rev. B 59, 14520 (1999).Google Scholar
8. Baumgart, P. et al., J. Appl. Phys. 69, 4792 (1991).Google Scholar
9. Herper, H. C., Weinberger, P., Szunyogh, L., and Entel, P., to be published in Phys. Rev. B.Google Scholar
10. Weinberger, P. and Szunyogh, L., Comp. Mater. Sci. 17, 414 (2000).Google Scholar
11. Szunyogh, L., Újfalussy, B., and Weinberger, P., Phys. Rev. B 51, 9552 (1995).Google Scholar
12. Jansen, H. J. F., Phys. Rev. B 59, 4699 (1999).Google Scholar
13. Weinberger, P., Levy, P. M., Banhart, J., Szunyogh, L., and Újfalussy, B., J. Phys: Cond. Matter 8, 7677 (1996).Google Scholar
14. Herper, H. C., Weinberger, P., Vernes, A., Szunyogh, L., and Sommers, C., Phys. Rev. B 64, 184442 (2001).Google Scholar
15. Mirbt, S., Niklasson, A. M. N., and Johansson, B., Phys. Rev. B 54, 6382 (1996).Google Scholar
16. Unguris, J., Celotta, R. J., and Pierce, D. T., Phys. Rev. Lett. 67, 140 (1991).Google Scholar