Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T18:32:20.315Z Has data issue: false hasContentIssue false

6Li and 7Li MAS NMR and In Situ X-ray Diffraction Studies of Lithium Manganate Cathode Materials

Published online by Cambridge University Press:  10 February 2011

Young Joo Lee
Affiliation:
Dept. of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400
Francis Wang
Affiliation:
Dept. of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400
Clare P. Grey
Affiliation:
Dept. of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400
Sanjeev Mukerjee
Affiliation:
Dept. of Chemistry, Northeastern University, 360 Huntington Avenue, Boston, MA02115
James McBreen
Affiliation:
Department of Applied Sciences, Brookhaven National Laboratory, Upton, NY 11793-5000
Get access

Abstract

6Li MAS NMR spectra of lithium manganese oxides with differing manganese oxidation states (LiMn2O4, Li4Mn5O12, Li2Mn4O9, and Li2Mn2O4) are presented. Improved understanding of the lithium NMR spectra of these model compounds is used to interpret the local structure of the LixMn2O4 cathode materials following electrochemical Li+ deintercalation to various charging levels. In situ x-ray diffraction patterns of the same material during charging are also reported for comparison. Evidence for two-phase behavior for x < 0.4 (LixMn2O4) is seen by both NMR and diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bruce, P. G., Chem. Commun 1817 (1997).Google Scholar
2. Nagaura, T. and Tazawa, K., Prog. Batteries Solar Cells 9, 20 (1990).Google Scholar
3. Gummow, R. J., Kock, A. de., and Thackeray, M. M., Solid State Ionics 69, 59 (1994).Google Scholar
4. Guyomard, D. and Tarascon, J. M., J. Electrochem. Soc. 139, 937 (1992).Google Scholar
5. Masquelier, C., Tabuchi, M., Ado, K., Kanno, R., Kobayashi, Y., Maki, Y., Nakamura, O., and Goodenough, J. B., J. Solid State Chem. 123, 255 (1996).Google Scholar
6. Rossouw, M. H., Kock, A. de., Picciotto, L. A. de, Thackeray, M. M., David, W. I. F., and Ibberson, R. M., Mat. Res. Bull. 25,173 (1990).Google Scholar
7. Thackeray, M. M., David, W. I. F., Bruce, P. G., and Goodenough, J. B., Mat. Res. Bull. 18, 461 (1983).Google Scholar
8. Mukerjee, S., McBreen, J., Reilly, J. J., Johnson, J. R., Adzic, G., Petrov, K., Kumar, M. P. S., Zhang, W., and Srinivasan, S., J. Electrochem. Soc. 142, 2278 (1995).Google Scholar
9. Lee, Y. J., Wang, F., and Grey, C. P., J. Am. Chem. Soc. in press (1998).Google Scholar
10. Lee, Y. J. and Grey, C. P., Unpublished results.Google Scholar
11. Richard, M. N., Koetschau, I., and Dahn, J. R., J. Electrochem. Soc. 144, 554 (1997).Google Scholar
12. Mukerjee, S., Thurston, T. R., Jisrawi, N. M., Yang, X. Q., and McBreen, J., J. Electrochem. Soc. 145, 466 (1998).Google Scholar