Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T14:28:58.507Z Has data issue: false hasContentIssue false

A review on direct methanol fuel cells – In the perspective of energy and sustainability

Published online by Cambridge University Press:  29 May 2015

Prabhuram Joghee
Affiliation:
Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
Jennifer Nekuda Malik
Affiliation:
Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
Svitlana Pylypenko
Affiliation:
Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, USA
Ryan O’Hayre*
Affiliation:
Department of Metallurgical & Materials Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
*
*Address all correspondence to Ryan O’Hayre at rohayre@mines.edu
Get access

Abstract

The direct methanol fuel cell (DMFC) enables the direct conversion of the chemical energy stored in liquid methanol fuel to electrical energy, with water and carbon dioxide as by-products. Compared to the more well-known hydrogen fueled polymer electrolyte membrane fuel cells (H2-PEMFCs), DMFCs present several intriguing advantages as well as a number of challenges.

This review examines the technological, environmental, and policy aspects of direct methanol fuel cells (DMFCs). The DMFC enables the direct conversion of the chemical energy stored in liquid methanol fuel to electrical energy, with water and carbon dioxide as byproducts. Compared to the more well-known hydrogen fueled PEMFCs, DMFCs present several intriguing advantages as well as a number of challenges. Factors impeding DMFC commercialization include the typically lower efficiency and power density, as well as the higher cost of DMFCs compared to H2-based fuel cells. Because of these issues, it is likely that DMFC technology will first be commercialized for small portable power applications (e.g., the displacement of batteries in consumer electronic applications), where the shorter product lifetimes (∼1–2 yrs for a battery versus 8–15 yrs for a car) and the much higher price points (∼$10/W for a laptop battery vs. ∼$0.05/W for a vehicle engine) provide a more attractive entry point. While such applications are not likely to significantly impact the global energy sustainability picture, they provide an important initial market for fuel cell technology. As such, in this review, we provide an overview of recent research and the challenges to the development of DMFCs for both the portable (shorter-term) and transport (longer-term) sectors.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Van Vilet, O., Brouwer, A.S., Kuramochi, T., van den Broek, M., and Faaij, A.: Energy use, cost and CO2 emissions of electric cars. J. Power Sources 196(4), 2298 (2011).CrossRefGoogle Scholar
Dunn, S.: Hydrogen futures: Toward a sustainable energy system. Int. J. Hydrogen Energy 27(3), 235 (2002).CrossRefGoogle Scholar
Bent, R.D., Orr, L., and Baker, R.: Energy: Science, Policy, and the Pursuit of Sustainability (Island Press, Washington, DC, 2002).Google Scholar
Wang, Y., Chen, K.S., Mishler, J., Cho, S.C., and Adroher, X.C.: A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 88(4), 981 (2011).Google Scholar
McNicol, B.D., Rand, D.A.J., and Williams, K.R.: Fuel cells for road transportation purposes - Yes or no? J. Power Sources 100(1–2), 47 (2001).CrossRefGoogle Scholar
Chan, C.C.: The state of the art of electric, hybrid, and fuel cell vehicles. Proc. IEEE 95(4), 704 (2007).Google Scholar
Hydrogen. In Encyclopedia Britannica (1990).Google Scholar
Ogden, J.M., Steinbugler, M.M., and Kreutz, T.G.: A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: Implications for vehicle design and infrastructure development. J. Power Sources 79(2), 143 (1999).Google Scholar
Armaroli, N. and Balzani, V.: The hydrogen issue. ChemSusChem. 4(1), 21 (2011).CrossRefGoogle ScholarPubMed
Dillon, R., Srinivasan, S., Arico, A.S., and Antonucci, V.: International activities in DMFC R&D: Status of technologies and potential applications. J. Power Sources 127(1–2), 112 (2004).CrossRefGoogle Scholar
McNicol, B.D., Rand, D.A.J., and Williams, K.R.: Direct methanol-air fuel cells for road transportation. J. Power Sources 83(1–2), 15 (1999).CrossRefGoogle Scholar
Aricò, A.S., Baglio, V., and Antonucci, V.: Direct methanol fuel Cells: History, status and perspectives. In Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 1.Google Scholar
Basak, P.R., Kausshik, N., and Biswas, S.: Methanol as energy carrier. Search 13(2), (2010).Google Scholar
Olah, G.A., Goeppert, A., and Prakash, G.K.S.: Beyond Oil and Gas: The Methanol Economy (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009).CrossRefGoogle Scholar
Nichols, R.J.: The methanol story: A sustainable fuel for the future. J. Sci. Ind. Res. 62(1–2), 97 (2003).Google Scholar
Mitchell, D.: A note on rising food prices. Policy Research Working Paper 4682, (2008). http://econ.worldbank.org.Google Scholar
Bromberg, L. and Cheng, W.K.: Methanol as an Alternative Transportation Fuel in the US: Options for Sustainable and/or Energy-Secure Transportation. http://www.afdc.energy.gov/, (2010).Google Scholar
Adamson, K-A. and Pearson, P.: Hydrogen and methanol: A comparison of safety, economics, efficiencies and emissions. J. Power Sources 86(1–2), 548 (2000).CrossRefGoogle Scholar
McGrath, K.M., Prakash, G.K.S., and Olah, G.A.: Direct methanol fuel cells. J. Ind. Eng. Chem. 10, 1063 (2004).Google Scholar
Colpan, C.O., Dincer, I., and Hamdullahpur, F.: Portable fuel cells – Fundamentals, technologies and applications. In Mini-Micro Fuel Cells: Fundamentals and Applications. NATO Science for Peace and Security Series. Kakac, S., Pramuanjaroenkij, A., and Vasiliev, L. eds.; Springer: Netherlands, 2008; pp. 87101.CrossRefGoogle Scholar
Garche, J., Stimming, U., Friedrich, A.K., Feidenhans'l, R., Garche, J., Stimming, U., Friedrich, A.K., and Feidenhans'l, R.: Hydrogen in portable devices. In Risø Energy Report 3. Hydrogen and its Competitors, Sønderberg Petersen, L. and Sønderberg Petersen, L., eds.; Holman Center-Tryk: Holbaek, Denmark, 2004; p. 47.Google Scholar
Jung, D-H., Jo, Y-K., Jung, J-H., Cho, S-H., Kim, C-S., and Shin, D-R.: Proceedings Fuel Cell Seminar, (Portland, 2000); p. 420.Google Scholar
Chang, H.: DMFC pack of 3.6 V-200 mW and its application in mobile electronics. In 2002 Small Fuel Cells, 4th Annual International Conference for Portable Power Applications, (Washington, DC, 2002).Google Scholar
Hockaday, R.G.: Micro-fuel cells at the crossroads. In 2002 Small Fuel Cells, 4th Annual International Conference for Portable Power Applications, (Washington, DC, 2002).Google Scholar
Slade, R.C.T., Kizewski, J.P., Poynton, S.D., Zeng, R., and Varcoe, J.R.: Alkaline membrane fuel cells. In Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology, Kreuer, K-D. ed.; (Springer Science and Business Media, New York, 2013).Google Scholar
Iwasita, T.: Methanol and CO electro-oxidation. In Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vielstich, W., Lamm, A., and Gasteiger, H.A., eds.; John Wiley & Sons: Chichester, UK, 2003; p. 603.Google Scholar
Ren, X.M., Wilson, M.S., and Gottesfeld, S.: High performance direct methanol polymer electrolyte fuel cells. J. Electrochem. Soc. 143(1), L12 (1996).Google Scholar
Arico, A.S., Creti, P., Kim, H., Mantegna, R., Giordano, N., and Antonucci, V.: Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt-Ru/C anode catalyst. J. Electrochem. Soc. 143(12), 3950 (1996).CrossRefGoogle Scholar
Shukla, A.K., Christensen, P.A., Hamnett, A., and Hogarth, M.P.: A vapor-feed direct-methanol fuel-cell with proton-exchange membrane electrolyte. J. Power Sources 55(1), 87 (1995).CrossRefGoogle Scholar
Jiang, R.Z., Rong, C., and Chu, D.R.: Determination of energy efficiency for a direct methanol fuel cell stack by a fuel circulation method. J. Power Sources 126(1–2), 119 (2004).Google Scholar
Gao, L., Abeysiri, M.C., and Winfield, Z.C.: Evaluating the energy consumption and emissions of direct alcohol fuel cells. Int. J. Energy Sci. 2(5), 211 (2012).Google Scholar
Moore, R.M., Gottesfeld, S., and Zelenay, P.: Control strategy to optimize the efficiency of a direct-methanol fuel cell for automotive applications. In Env 99 Alternative Fuels Conference & Exposition, Institute of Transportation Studies, University of California, Davis, 1999).Google Scholar
Shah, K. and Besser, R.S.: Key issues in the microchemical systems-based methanol fuel processor: Energy density, thermal integration, and heat loss mechanisms. J. Power Sources 166(1), 177 (2007).CrossRefGoogle Scholar
Hebling, C.: Portable fuel cell systems. Fuel Cells Bulletin 2002(7), 812 (2002).Google Scholar
Florez, E. and Adolp, M.: Batteries for portable ICT devices. In ICT-T TechWatch Alert February (2010). http://www.itu.int/ITU-T/techwatch.Google Scholar
Beden, B., Kadirgan, F., Lamy, C., and Leger, J.M.: Oxidation of methanol on a platinum-electrode in alkaline-medium: Effect of metal ad-atoms on the electrocatalytic activity. J. Electroanal. Chem. 142(1–2), 171 (1982).CrossRefGoogle Scholar
Kunimatsu, K.: Insitu infrared spectroscopic studies of methanol electrooxidation on Pt. Ber. Bunsen Phys. Chem. 94(9), 1025 (1990).CrossRefGoogle Scholar
Prabhuram, J. and Manoharan, R.: Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid. J. Power Sources 74(1), 54 (1998).CrossRefGoogle Scholar
Watanabe, M. and Motoo, S.: Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 60(3), 267 (1975).CrossRefGoogle Scholar
Goto, S., Li, N.N.Y., Senoo, T., Noda, K., Kudo, Y., Maesaka, A., and Hatazawa, T.: PtRu nanoparticles catalytic activity enhanced by the ligand effect. MRS Proc. 1127-T07-01, 1127 (2008).Google Scholar
Gotz, M. and Wendt, H.: Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim. Acta 43(24), 3637 (1998).Google Scholar
Mukerjee, S. and Urian, R.C.: Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: Electrochemical and in situ synchrotron spectroscopy. Electrochim. Acta 47(19), 3219 (2002).CrossRefGoogle Scholar
Prabhuram, J. and Manoharan, R.: Electro-oxidation of methanol on porous unsupported Pt-Ru alloy electrodes in strong alkali and strong acid. Portugaliae Electrochim. Acta 16, 181 (1998).Google Scholar
Zhou, W.J., Zhou, B., Li, W.Z., Zhou, Z.H., Song, S.Q., Sun, G.Q., Xin, Q., Douvartzides, S., Goula, A., and Tsiakaras, P.: Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J. Power Sources 126(1–2), 16 (2004).Google Scholar
Ralph, T.R. and Hogarth, M.P.: Catalysis for low temperature fuel cells, Part II: The anode challenges. Platinum Met. Rev. 46(3), 117 (2002).Google Scholar
Prakash, G.K.S., Krause, F.C., Viva, F.A., Natrayanan, S.R., and Olah, G.A.: Study of operating conditions and cell design on the performance of alkaline anion exchange membrane based direct methanol fuel cells. J. Power Sources 196(19), 7967 (2011).CrossRefGoogle Scholar
Joghee, P., Pylypenko, S., Wood, K., Bender, G., and O'Hayre, R.: High-performance alkaline direct methanol fuel cell using a nitrogen-postdoped anode. ChemSusChem. 7(7), 1854 (2014).CrossRefGoogle ScholarPubMed
Lizcano-Valbuena, W.H., Bortholin, E.C., Neto, A.O., Paganin, V.A., and Gonzalez, E.R.: A direct methanol fuel cells with Pt alloys with Ru, Mo, W and Os as anode catalyst. Meeting Abstracts, The Electrochemical Society, Pennington, NJ, 2001.Google Scholar
Salgado, J.R.C., Paganin, V.A., Gonzalez, E.R., Montemor, M.F., Tacchini, I., Anson, A., Salvador, M.A., Ferreira, P., Figueiredo, F.M.L., and Ferreira, M.G.S.: Characterization and performance evaluation of Pt-Ru electrocatalysts supported on different carbon materials for direct methanol fuel cells. Int. J. Hydrogen Energy 38(2), 910 (2013).CrossRefGoogle Scholar
Qi, J., Jiang, L., Tang, Q., Zhu, S., Wang, S., Yi, B., and Sun, G.: Synthesis of graphitic mesoporous carbons with different surface areas and their use in direct methanol fuel cells. Carbon 50(8), 2824 (2012).Google Scholar
Prabhuram, J., Zhao, T.S., Tang, Z.K., Chen, R., and Liang, Z.X.: Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. J. Phys. Chem. B 110(11), 5245 (2006).CrossRefGoogle ScholarPubMed
Chai, G.S., Yoon, S.B., Kim, J.H., and Yu, J.S.: Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell. Chem. Commun. (23), 2766 (2004).CrossRefGoogle ScholarPubMed
Bong, S., Kim, Y.R., Kim, I., Woo, S., Uhm, S., Lee, J., and Kim, H.: Preparation and electrochemical performance of Pt/graphene nanocomposites. Electrochem. Commun. 11, 846 (2009).Google Scholar
Kang, S., Lim, S., Peck, D.H., Kim, S.K., Jung, D.H., Hong, S.H., Jung, H.G., and Shul, Y.: Stability and durability of PtRu catalysts supported on carbon nanofibers for direct methanol fuel cells. Int. J. Hydrogen Energy 37(5), 4685 (2012).Google Scholar
Zhou, Y.K., Neyerlin, K., Olson, T.S., Pylypenko, S., Bult, J., Dinh, H.N., Gennett, T., Shao, Z.P., and O'Hayre, R.: Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 3(10), 1437 (2010).CrossRefGoogle Scholar
Wood, K.N., Pylypenko, S., Olson, T.S., Dameron, A.A., O'Neill, K., Christensen, S.T., Dinh, H.N., Gennett, T., and O'Hayre, R.: Effect of halide-modified model carbon supports on catalyst stability. ACS Appl. Mater. Interfaces 4(12), 6727 (2012).Google Scholar
Pylypenko, S., Queen, A., Olson, T.S., Dameron, A., O'Neill, K., Neyerlin, K.C., Pivovar, B., Dinh, H.N., Ginley, D.S., Gennett, T., and O'Hayre, R.: Tuning carbon-based fuel cell catalyst support structures via nitrogen functionalization. II. Investigation of durability of Pt-Ru nanoparticles supported on highly oriented pyrolytic graphite model catalyst supports as a function of nitrogen implantation dose. J. Phys. Chem. C 115(28), 13676 (2011).CrossRefGoogle Scholar
Kolla, P., Kerce, K., Normah, Y., Fong, H., and Smirnova, A.: Metal oxides modified mesoporous carbon supports as anode catalysts in DMFC. ECS Trans. 45(21), 35 (2013).CrossRefGoogle Scholar
Olson, T.S., Dameron, A.A., Wood, K., Pylpenko, S., Hurst, K.E., Christensen, S., Bult, J.B., Ginley, D.S., O’Hayre, R., Dinh, H., and Gennett, T.: Enhanced fuel cell catalyst durability with nitrogen modified carbon supports. J. Electrochem. Soc. 160(4), F389 (2013).CrossRefGoogle Scholar
Corpuz, A.R., Olson, T.S., Joghee, P., Pylypenko, S., Dameron, A.A., Dinh, H.N., O'Neill, K.J., Hurst, K.E., Bender, G., Gennett, T., Pivovar, B.S., Richards, R.M., and O'Hayre, R.P.: Effect of a nitrogen-doped PtRu/carbon anode catalyst on the durability of a direct methanol fuel cell. J. Power Sources 217, 142 (2012).Google Scholar
Joghee, P., Pylypenko, S., Olson, T.S., Dameron, A., Corpuz, A., Dinh, H.N., Wood, K., O'Neill, K., Hurst, K., Bender, G., Gennett, T., Pivovar, B., and O'Hayre, R.: Enhanced stability of PtRu supported on N-doped carbon for the anode of a DMFC. J. Electrochem. Soc. 159(11), F768 (2012).Google Scholar
Corpuz, A.R., Wood, K.N., Pylypenko, S., Demeron, A., Joghee, P., Olson, T.S., Bender, G., Dinh, H.N., Gennett, T., and Richards, R.M.: Effect of nitrogen post-doping on a commercial platinum–ruthenium/carbon anode catalyst. J. Power Sources 248, 296 (2014).CrossRefGoogle Scholar
Ralph, T.R. and Hogarth, M.P.: Catalysis for low temperature fuel cells part I: The cathode challenges. Platinum Met. Rev. 46(1), 3 (2002).Google Scholar
Prabhuram, J., Zhao, T.S., and Yang, H.: Methanol adsorbates on the DMFC cathode and their effect on the cell performance. J. Electroanal. Chem. 578(1), 105 (2005).Google Scholar
Casalegno, A., Bresciani, F., Zago, M., and Marchesi, R.: Experimental investigation of methanol crossover evolution during direct methanol fuel cell degradation tests. J. Power Sources 249, 103 (2014).Google Scholar
Li, W.Z., Xin, Q., and Yan, Y.S.: Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: The effect of catalyst composition. Int. J. Hydrogen Energy 35(6), 2530 (2010).CrossRefGoogle Scholar
Xu, J.B., Zhao, T.S., Yang, W.W., and Shen, S.Y.: Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells. Int. J. Hydrogen Energy 35(16), 8699 (2010).CrossRefGoogle Scholar
Antolini, E., Salgado, J.R.C., Santos, L.G.R.A., Garcia, G., Ticianelli, E.A., Pastor, E., and Gonzalez, E.R.: Carbon supported Pt-Cr alloys as oxygen-reduction catalysts for direct methanol fuel cells. J. Appl. Electrochem. 36(3), 355 (2006).Google Scholar
Nishanth, K.G., Sridhar, P., Pitchumani, S., and Shukla, A.K.: A DMFC with methanol-tolerant-carbon-supported-Pt-Pd-alloy cathode. J. Electrochem. Soc. 158(8), B871 (2011).Google Scholar
Meng, H., Shen, P.K., Wei, Z.D., and Jiang, S.P.: Improved performance of direct methanol fuel cells with tungsten carbide promoted Pt/C composite cathode electrocatalyst. Electrochem. Solid-State Lett. 9(7), A368 (2006).CrossRefGoogle Scholar
Antolini, E., Salgado, J.R.C., and Gonzalez, E.R.: The stability of Pt-m (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: A literature review and tests on a Pt-Co catalyst. J. Power Sources 160(2), 957 (2006).CrossRefGoogle Scholar
Wei, Z.D., Guo, H.T., and Tang, Z.Y.: Heat treatment of carbon-based powders carrying platinum alloy catalysts for oxygen reduction: Influence on corrosion resistance and particle size. J. Power Sources 62(2), 233 (1996).Google Scholar
Xiong, L. and Manthiram, A.: Effect of atomic ordering on the catalytic activity of carbon supported PtM (M = Fe, Co, Ni, and Cu) alloys for oxygen reduction in PEMFCs. J. Electrochem. Soc. 152(4), A697 (2005).Google Scholar
Reeve, R.W., Christensen, P.A., Hamnett, A., Haydock, S.A., and Roy, S.C.: Methanol tolerant oxygen reduction catalysts based on transition metal sulfides. J. Electrochem. Soc. 145(10), 3463 (1998).CrossRefGoogle Scholar
Sun, G.Q., Wang, J.T., and Savinell, R.F.: Iron(III) tetramethoxyphenylporphyrin (FeTMPP) as methanol tolerant electrocatalyst for oxygen reduction in direct methanol fuel cells. J. Appl. Electrochem. 28(10), 1087 (1998).CrossRefGoogle Scholar
Bunazawa, H. and Yamazaki, Y.: Ultrasonic synthesis and evaluation of non-platinum catalysts for alkaline direct methanol fuel cells. J. Power Sources 190(2), 210 (2009).CrossRefGoogle Scholar
Jiang, L., Hsu, A., Chu, D., and Chen, R.: Oxygen reduction reaction on carbon supported Pt and Pd in alkaline solutions. J. Electrochem. Soc. 156(3), B370 (2009).Google Scholar
Furuya, N. and Aikawa, H.: Comparative study of oxygen cathodes loaded with Ag and Pt catalysts in chlor-alkali membrane cells. Electrochim. Acta 45(25–26), 4251 (2000).CrossRefGoogle Scholar
Okajima, K., Nabekura, K., Kondoh, T., and Sudoh, M.: Degradation evaluation of gas-diffusion electrodes for oxygen-depolarization in chlor-alkali membrane cell. J. Electrochem. Soc. 152(8), D117 (2005).CrossRefGoogle Scholar
Arico, A.S., Srinivasan, S., and Antonucci, V.: DMFCs: From fundamental aspects to technology development. Fuel Cells 1(2), 133 (2001).Google Scholar
Agro, S., DeCarmine, T., DeFelice, S., and Thoma, L.:Annual progress report for the DOE hydrogen program, US Department of Energy (DOE). website: http://www.hydrogen.energy.gov.Google Scholar
Howell, J.: Keynote Paper The Fifth International Membrane Science & Technology Conference (IMSTEC '03), Sydney, Australia, November 10–14, (2003).Google Scholar
Reeve, R.W.:Update on Status of Direct Methanol Fuel Cells (Harwell Laboratory, Energy Technology Support Unit, Fuel cells Programme, 2002).Google Scholar
Piela, P., Eickes, C., Brosha, E., Garzon, F., and Zelenay, P.: Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J. Electrochem. Soc. 151(12), A2053 (2004).CrossRefGoogle Scholar
Antonucci, P.L., Arico, A.S., Creti, P., Ramunni, E., and Antonucci, V.: Investigation of a direct methanol fuel cell based on a composite Nafion (R)-silica electrolyte for high temperature operation. Solid State Ionics 125(1–4), 431 (1999).Google Scholar
Dimitrova, P., Friedrich, K.A., Stimming, U., and Vogt, B.: Modified Nafion((R))-based membranes for use in direct methanol fuel cells. Solid State Ionics 150(1–2), 115 (2002).CrossRefGoogle Scholar
Liu, J., Wang, H.T., Cheng, S., and Chan, K.Y.: Nafion-polyfurfuryl alcohol nanocomposite membranes with low methanol permeation. Chem. Commun. (6), 728 (2004).CrossRefGoogle ScholarPubMed
Jang, R.C., Kunz, H.R., and Fenton, J.M.: Composite silica/Nafion membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells. J. Membr. Sci. 272, 116 (2006).CrossRefGoogle Scholar
Kim, Y.S., Sumner, M.J., Harrison, W.L., Riffle, J.S., McGrath, J.E., and Pivovar, B.S.: Direct methanol fuel cell performance of disulfonated poly-(arylene ether benzonitrile) copolymers. J. Electrochem. Soc. 151(12), A2150 (2004).Google Scholar
Wang, J.T., Wainright, J.S., Savinell, R.F., and Litt, M.: A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte. J. Appl. Electrochem. 26(7), 751 (1996).CrossRefGoogle Scholar
Yang, C., Srinivasan, S., Aricò, A.S., Cretı`, P., Baglio, V., and Antonucci, V.: Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature. Electrochem. Solid-State Lett. 4(4), A31 (2001).Google Scholar
Li, L., Zhang, J., and Wang, Y.: Sulfonated polyether ether membranes cured with different methods for direct methanol fuel cells. J. Mater Sci. Lett. 22, 1595 (2003).CrossRefGoogle Scholar
Yu, E.H. and Scott, K.: Development of direct methanol alkaline fuel cells using anion exchange membranes. J. Power Sources 137(2), 248 (2004).Google Scholar
Yu, E.H., Krewer, U., and Scott, K.: Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3(8), 1499 (2010).Google Scholar
Varcoe, J.R., Slade, R.C., Yee, E.L.H., Poynton, S.D., and Driscoll, D.J.: Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes. J. Power Sources 173(1), 194 (2007).CrossRefGoogle Scholar
Xiong, Y., Liu, Q.L., and Zeng, Q.H.: Quaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells. J. Power Sources 193(2), 541 (2009).Google Scholar
Li, L. and Wang, Y.X.: Quaternized polyethersulfone cardo anion exchange membranes for direct methanol alkaline fuel cells. J. Membr. Sci. 262(1–2), 1 (2005).CrossRefGoogle Scholar
Xiong, Y., Fang, J., Zeng, Q.H., and Liu, Q.L.: Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J. Membr. Sci. 311(1–2), 319 (2008).CrossRefGoogle Scholar
Xiong, Y., Liu, Q.L., Zhang, Q.G., and Zhu, A.M.: Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J. Power Sources 183(2), 447 (2008).Google Scholar
Xiong, Y., Liu, Q.L., Zhu, A.M., Huang, S.M., and Zeng, Q.H.: Performance of organic–inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells. J. Power Sources 186(2), 328 (2009).Google Scholar
Yang, C-C., Chiu, S-J., Lee, K-T., Chien, W-C., Lin, C-T., and Huang, C-A.: Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. J. Power Sources 184(1), 44 (2008).CrossRefGoogle Scholar
Wu, L., Xu, T., Wu, D., and Zheng, X.: Preparation and characterization of CPPO/BPPO blend membranes for potential application in alkaline direct methanol fuel cell. J. Membr. Sci. 310(1–2), 577 (2008).CrossRefGoogle Scholar
Wu, L. and Xu, T.: Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. J. Membr. Sci. 322(2), 286 (2008).CrossRefGoogle Scholar
Hou, H.Y., Sun, G.Q., He, R.H., Sun, B.Y., Jin, W., Liu, H., and Xin, Q.: Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell. Int. J. Hydrogen Energy 33(23), 7172 (2008).Google Scholar
Lindermeir, A., Rosenthal, G., Kunz, U., and Hoffmann, U.: On the question of MEA preparation for DMFCs. J. Power Sources 129(2), 180 (2004).Google Scholar
Tang, H.L., Wang, S.L., Pan, M., Jiang, S.P., and Ruan, Y.Z.: Performance of direct methanol fuel cells prepared by hot-pressed MEA and catalyst-coated membrane (CCM). Electrochim. Acta 52(11), 3714 (2007).Google Scholar
Zhang, J., Yin, G.P., Wang, Z.B., and Shao, Y.Y.: Effects of MEA preparation on the performance of a direct methanol fuel cell. J. Power Sources 160(2), 1035 (2006).Google Scholar
Pak, C., You, G.P., Choi, K.H., and Chang, H.: High performance membrane electrode assemblies by optimization of processes and supported catalysts. In Hydrogen Energy-Challenges and Perspectives, Intech: 2012; Chapter 10.Google Scholar
Cho, J.H., Kim, J.M., Prabhuram, J., Hwang, S.Y., Ahn, D.J., Ha, H.Y., and Kim, S-K.: Fabrication and evaluation of membrane electrode assemblies by low-temperature decal methods for direct methanol fuel cells. J. Power Sources 187(2), 378 (2009).Google Scholar
You, D., Lee, Y., Cho, H., Kim, J-H., Pak, C., Lee, G., Park, K-Y., and Park, J-Y.: High performance membrane electrode assemblies by optimization of coating process and catalyst layer structure in direct methanol fuel cells. Int. J. Hydrogen Energy 36(8), 5096 (2011).Google Scholar
Iwastia, T. and Vielstich, W.: New in-situ results on adsorption and oxidation of methanol on platinum in acid solution. J. Electroanal. Chem. 250, 451 (1988).Google Scholar
Lamy, C., Léger, J-M., and Srinivasan, S.: Direct methanol fuel Cells: From a twentieth century electrochemist’s dream to a twenty-first century emerging technology. In Modern Aspects of Electrochemistry, Bockris, J.O.M., Conway, B.E., and White, R. eds.; Springer: US, 2002; p. 53.Google Scholar
Kordesch, K.V. and Simader, G.R.: Fuel Cells and Their Applications (Wiley-VCH Verlag GmbH & Co. KGaA: New York, 2006).Google Scholar
Surampudi, S., Narayanan, S.R., Vamos, E., Frank, H., Halpert, G., LaConti, A., Kosek, J., Prakash, G.K.S., and Olah, G.A.: Advances in direct oxidation methanol fuel cells. J. Power Sources 47(3), 377 (1994).Google Scholar
Hwan Jung, D., Hyeong Lee, C., Soo Kim, C., and Ryul Shin, D.: Performance of a direct methanol polymer electrolyte fuel cell. J. Power Sources 71(1–2), 169 (1998).Google Scholar
Liu, G., Wang, M., Wang, Y., Ye, F., Wang, T., Tian, Z., and Wang, X.: Anode catalyst layer with novel microstructure for a direct methanol fuel cell. Int. J. Hydrogen Energy 37(10), 8659 (2012).CrossRefGoogle Scholar
Joghee, P., Pylypenko, S., Wood, K., Corpuz, A., Bender, G., Dinh, H.N., and O'Hayre, R.: Improvement in direct methanol fuel cell performance by treating the anode at high anodic potential. J. Power Sources 245, 37 (2014).CrossRefGoogle Scholar
Liu, J.G., Zhou, Z.H., Zhao, X.X., Xin, Q., Sun, G.Q., and Yi, B.L.: Studies on performance degradation of a direct methanol fuel cell (DMFC) in life test. Phys. Chem. Chem. Phys. 6(1), 134 (2004).CrossRefGoogle Scholar
Guo, J., Sun, G., Wu, Z., Sun, S., Yan, S., Cao, L., Yan, Y., Su, D., and Xin, Q.: The durability of polyol-synthesized PtRu/C for direct methanol fuel cells. J. Power Sources 172(2), 666 (2007).CrossRefGoogle Scholar
Wang, Z-B., Rivera, H., Wang, X-P., Zhang, H-X., Feng, P-X., Lewis, E.A., and Smotkin, E.S.: Catalyst failure analysis of a direct methanol fuel cell membrane electrode assembly. J. Power Sources 177(2), 386 (2008).Google Scholar
Prabhuram, J., Krishnan, N.N., Choi, B., Lim, T-H., Ha, H.Y., and Kim, S-K.: Long-term durability test for direct methanol fuel cell made of hydrocarbon membrane. Int. J. Hydrogen Energy 35(13), 6924 (2010).CrossRefGoogle Scholar
Park, J-Y., Scibioh, M.A., Kim, S-K., Kim, H-J., Oh, I-H., Lee, T.G., and Ha, H.Y.: Investigations of performance degradation and mitigation strategies in direct methanol fuel cells. Int. J. Hydrogen Energy 34(4), 2043 (2009).Google Scholar
Park, J.Y., Kim, J.H., Seo, Y., Yu, D.J., Cho, H., and Bae, S.J.: Operating temperature dependency on performance degradation of direct methanol fuel cells. Fuel Cells 12(3), 426 (2012).Google Scholar
Dohle, H., Schmitz, H., Bewer, T., Mergel, J., and Stolten, D.: Development of a compact 500 W class direct methanol fuel cell stack. J. Power Sources 106(1–2), 313 (2002).Google Scholar
Xie, C., Bostaph, J., and Pavio, J.: Development of a 2 W direct methanol fuel cell power source. J. Power Sources 136(1), 55 (2004).Google Scholar
Kim, D., Lee, J., Lim, T-H., Oh, I-H., and Ha, H.Y.: Operational characteristics of a 50 W DMFC stack. J. Power Sources 155(2), 203 (2006).CrossRefGoogle Scholar
Park, Y-C., Peck, D-H., Kim, S-K., Lim, S., Jung, D-H., Jang, J-H., and Lee, D-Y.: Dynamic response and long-term stability of a small direct methanol fuel cell stack. J. Power Sources 195(13), 4080 (2010).CrossRefGoogle Scholar
Kang, S., Jung, D., Shin, J., Lim, S., Kim, S.K., Shul, Y., and Peck, D.H.: Long-term durability of radiation-grafted PFA-g-PSSA membranes for direct methanol fuel cells. J. Membr. Sci. 447, 36 (2013).CrossRefGoogle Scholar
Matsuoka, K., Iriyama, Y., Abe, T., Matsuoka, M., and Ogumi, Z.: Alkaline direct alcohol fuel cells using an anion exchange membrane. J. Power Sources 150, 27 (2005).CrossRefGoogle Scholar
Scott, K., Yu, E., Vlachogiannopoulos, G., Shivare, M., and Duteanu, N.: Performance of a direct methanol alkaline membrane fuel cell. J. Power Sources 175(1), 452 (2008).Google Scholar
Kim, H., Shin, S-J., Park, Y-G., Song, J., and Kim, H-T.: Determination of DMFC deterioration during long-term operation. J. Power Sources 160(1), 440 (2006).CrossRefGoogle Scholar
Kim, Y.S. and Pivovar, B.S.: Durability of membrane-electrode interface under DMFC operating conditions. ECS Trans. 1(8), 457 (2006).Google Scholar
Kang, S., Jung, D.H., Shin, J., Kim, S.K., Shul, Y., and Peck, D.H.: Performance and durability of MEA prepared with crosslinked ETFE-g-PSSA(DVB) membranes for direct methanol fuel cells using high concentration methanol. J. Membr. Sci. 459, 12 (2014).CrossRefGoogle Scholar
Chin, X-G., Yan, P-Y., and Wang, C-P.: Enhancement of durability and performance in direct methanol fuel cell by a microporous layer with ultra-small pores. ECS Trans. 26(1), 295 (2010).Google Scholar
Park, J-Y., Seo, Y., Kang, S., You, D., Cho, H., and Na, Y.: Operational characteristics of the direct methanol fuel cell stack on fuel and energy efficiency with performance and stability. Int. J. Hydrogen Energy 37(7), 5946 (2012).CrossRefGoogle Scholar
Kim, J., Momma, T., and Osaka, T.: Cell performance of Pd–Sn catalyst in passive direct methanol alkaline fuel cell using anion exchange membrane. J. Power Sources 189(2), 999 (2009).CrossRefGoogle Scholar
Kim, J-H., Kim, H-K., Hwang, K-T., and Lee, J-Y.: Performance of air-breathing direct methanol fuel cell with anion-exchange membrane. Int. J. Hydrogen Energy 35(2), 768 (2010).Google Scholar
Bunazawa, H. and Yamazaki, Y.: Influence of anion ionomer content and silver cathode catalyst on the performance of alkaline membrane electrode assemblies (MEAs) for direct methanol fuel cells (DMFCs). J. Power Sources 182(1), 48 (2008).CrossRefGoogle Scholar
Ren, X., Zelenay, P., Thomas, S., Davey, J., and Gottesfeld, S.: Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. J. Power Sources 86(1–2), 111 (2000).CrossRefGoogle Scholar
Joh, H-I., Hwang, S.Y., Cho, J.H., Ha, T.J., Kim, S-K., Moon, S.H., and Ha, H.Y.: Development and characteristics of a 400 W-class direct methanol fuel cell stack. Int. J. Hydrogen Energy 33(23), 7153 (2008).CrossRefGoogle Scholar
Chen, C-Y. and Cha, H-C.: Strategy to optimize cathode operating conditions to improve the durability of a direct methanol fuel cell. J. Power Sources 200, 21 (2012).CrossRefGoogle Scholar
Park, Y-C., Peck, D-H., Kim, S-K., Lim, S., Lee, D-Y., Ji, H., and Jung, D-H.: Operation characteristics of portable direct methanol fuel cell stack at sub-zero temperatures using hydrocarbon membrane and high concentration methanol. Electrochim. Acta 55(15), 4512 (2010).CrossRefGoogle Scholar
Manokaran, A., Vijayakumar, R., Thomman, T.N., Sridhar, P., Pitchumani, S., and Shukla, A.K.: A self-supported 40 W direct methanol fuel cell system. J. Chem. Sci. 123(3), 343 (2011).Google Scholar
Bae, B., Kho, B.K., Lim, T-H., Oh, I-H., Hong, S-A., and Ha, H.Y.: Performance evaluation of passive DMFC single cells. J. Power Sources 158(2), 1256 (2006).CrossRefGoogle Scholar
Liu, J.G., Zhao, T.S., Liang, Z.X., and Chen, R.: Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. J. Power Sources 153(1), 61 (2006).Google Scholar
Guo, Z. and Faghri, A.: Development of planar air breathing direct methanol fuel cell stacks. J. Power Sources 160(2), 1183 (2006).Google Scholar
Tsujiguchi, T., Abdelkareem, M.A., Yoshitoshi, T., Nobuyoshi, N., Shimizu, T., Sato, M., and Matsuda, M.: Fabrication of 2 W passive DMFC operating with high concentration methanol. In Proceedings of Power MEMS Sendai, Japan, 2008; pp. 321.Google Scholar
Nakagawa, N., Tsujiguchi, T., Sakurai, S., and Aoki, R.: Performance of an active direct methanol fuel cell fed with neat methanol. J. Power Sources 219, 325 (2012).Google Scholar
Zhu, Y., Liang, J., Liu, C., Ma, T., and Wang, L.: Development of a passive direct methanol fuel cell (DMFC) twin-stack for long-term operation. J. Power Sources 193(2), 649 (2009).CrossRefGoogle Scholar
Li, X. and Faghri, A.: Development of a direct methanol fuel cell stack fed with pure methanol. Int. J. Hydrogen Energy 37(19), 14549 (2012).CrossRefGoogle Scholar
Yomogita, H. and Electronics, N.: Panasonic develops Li-ion rechargeable battery with greatly increased capacity. In Nikkei Technology (2007).Google Scholar
Anthony, S.: At long last, new lithium battery tech actually arrives on the market (and might be in your smart phone). In Extreme Tech News Letter (2014).Google Scholar
Stone, C.: Fuel cell technologies powering portable electronic devices. Fuel Cells Bulletin 2007(10), 12 (2007).CrossRefGoogle Scholar
Gottesfeld, S.: DMFCs power up for portable devices. The Fuel Cell Rev. 1, 25 (2004).Google Scholar
Dyer, C.K.: Fuel cells for portable applications. J. Power Sources 106(1–2), 31 (2002).Google Scholar
Samsung fuel cell to power laptop for a month pop. www.sait.samsung.co.kr.Google Scholar
Eustis, S.: Direct Methanol Fuel Cells (DMFC): Extends Power Efficiency for Portable Electronic Devices – Markets Reach $1.1 Billion by 2016 (WinterGreen Research, Inc., Lexington, MA, 2008); p. 1.Google Scholar
Bostaph, J., Korpella, R., Fisher, A., Zindel, D., and Hallmark, J.: Microfluidic fuel delivery system for 100 mW DMFC. In Proceedings of the 199th Meeting on Direct Methanol Fuel Cell, (Washington, DC, 2001).Google Scholar
Hockaday, R.G.: Surface replica fuel cell for micro fuel cell electrical power pack. US Patent No. 5,759,712, (1998).Google Scholar
Dohle, H., Mergel, J., Scharmann, H., and Schmitz, H.: Development of an air-breathing 50 W direct methanol fuel cell stack. In Proceedings of the 199th Meeting Direct Methanol Fuel Cell Symposium, (Washington, DC, 2001).Google Scholar
Yomogita, H.: Sony unveils ultra-small hybrid fuel cell. (2008). http://techon.nikkeibp.co.jp/english/NEWS_EN/20080502/151303/.Google Scholar
Witham, C.K., Chun, W., Valdez, T.I., and Narayanan, S.R.: Performance of direct methanol fuel cells with sputter - deposited anode catalyst layers. Electrochem. Solid-State Lett. 3(11), 497 (2000).Google Scholar
Samsung unveils fuel cell-equipped laptop docking station, Technews World, 2006.Google Scholar
The smart way to get DMFC products into the market. Fuel Cells Bulletin 2003(9), 10 (2003).Google Scholar
Cristiani, J. and Sifer, N.: Test and evaluation of the smart fuel cell C20-MP direct methanol fuel cell system as a soldier power source. (2005).Google Scholar
SFC smart fuel cell environmental power supply. In Security Solutions (2008).Google Scholar
Boehm, C.: SFC’s direct methanol fuel cells, Joint Service Power Expo, (2009). www.sfc.com.Google Scholar
Cross, T., Reiman, D., and D’Couto, C.: Development of porous silicon based direct methanol fuel cells with nitric acid as liquid oxidant for portable applications, In Wires Energy and Environment, 4(2),(2015).Google Scholar
McConnell, V.P.: Fuel cells feed power-hungry portable electronics. Fuel Cells Bulletin 2009(6), 12 (2009).Google Scholar
MTI chief says micro fuel cell might still hold some power. In Albany Business Review (2013).Google Scholar
Toshiba launches direct methanol fuel cell in Japan as external power sources for mobile electronic devices, http://www.toshiba.co.jp/about/press/2009_10/pr2201.htm.Google Scholar
T. Smith Toshiba touts fuel cell-equipped MP3 player, http:www.theregister.co.uk/2005/09/16/Toshiba ful cell MP3 players/.Google Scholar
Li, X. and Faghri, A.: Review and advances of direct methanol fuel cells (DMFCs) part I: Design, fabrication, and testing with high concentration methanol solutions. J. Power Sources 226, 223 (2013).CrossRefGoogle Scholar
Kariastsumari, K.. Sony explains high output of ultra-small fuel-cell system. http://techon.nikkeibp.co.jp/english/NEWS_EN/20080507/151383/.Google Scholar
On the road with methanol: The present and future benefits of methanol fuel, Prepared for the Methanol Institute, http://www.methanol.org.Google Scholar
Energy Information Administration: Alternative to Traditional Transportation Fuels 1998, DOE/EIA 0585(98), Washington, DC, (1998).Google Scholar
Methanol: The clear alternative for transportation, Methanol fuel and FFV technology. Available at http://www.methanol.org, (2011).Google Scholar
Lotus researches cars running on CO2-Exiges 270E Tri-fuel is the next stage of Lotus Engineering’s long-term sustainable, synthetic alcohol research, News release Lotus Engineering, (January, 2008).Google Scholar
Alternative fuels for vehicles fleet demonstration program volume 3, Technical reports, NewYork State Energy Research and Development Authority, (1997).Google Scholar
Cheng, W.-H. and Kung, H.H.: Methanol Production and Use (Marcel Dekker, New York, 2003).Google Scholar
Beyond the Internal Combustion Engine: The Promise of Methanol Fuel Cell Vehicles, http://www.methanol.org/.Google Scholar
Armstrong, A.: In Fuel Cell Technology Conference, (Chicago, IL, 1999).Google Scholar
Schaller, K.V. and Gruber, C.: Fuel cell drive and high dynamic energy storage systems — Opportunities for the future city bus. Fuel Cells Bulletin 3(27), 9 (2000).Google Scholar
Panik, F.: Fuel cells for vehicle applications in cars - bringing the future closer. J. Power Sources 71(1–2), 36 (1998).CrossRefGoogle Scholar
Lloyd, A.C.: The California fuel cell partnership: An avenue to clean air. J. Power Sources 86(1–2), 57 (2000).Google Scholar
Folkesson, A., Andersson, C., Alvfors, P., Alaküla, M., and Overgaard, L.: Real life testing of a hybrid PEM fuel cell bus. J. Power Sources 118(1–2), 349 (2003).CrossRefGoogle Scholar
Davis, C., Edelstein, B., Evenson, B., Breacher, A., and Cox, D.: Hydrogen fuel cell vehicle study, A report prepared for the panel on public affairs, American Physical Soc., (2003).Google Scholar
Mori, D., Haraikawa, N., Kobayashi, N., Shinozawa, T., Matsunaga, T., Kubo, H., Toh, K., and Tsuzuki, M.: High pressure metal hydride tank for fuel cell vehicles. In IPHE Intern. Hydrogen Storage Technology Conference, (Lucca, Italy, 2005).Google Scholar
Lipman, T.: An overview of hydrogen production and storage systems with renewable hydrogen case studies. In Clean Energy State Alliance, (2011).Google Scholar
Harris, D. Ballard Power Systems Inc.: News Release, November 9, 2000.Google Scholar
Zhang, J., Colbow, K.M., and Wilkinson, D.P.: Ionomer impregnation of electrode substrates for improved fuel cell. US Patent No. 6, 187,467, (2001).Google Scholar
Buttin, D., Dupont, M., Straumann, M., Gille, R., Dubois, J.C., Ornelas, R., Fleba, G.P., Ramunni, E., Antonucci, V., Aricò, A.S., Cretì, P., Modica, E., Pham-Thi, M., and Ganne, J.P.: Development and operation of a 150 W air-feed direct methanol fuel cell stack. J. Appl. Electrochem. 31(3), 275 (2001).Google Scholar
Baldauf, M. and Preidel, W.: Status of the development of a direct methanol fuel cell. J. Power Sources 84(2), 161 (1999).Google Scholar
Committee on climate change, building a low-carbon economy-the UK’s contribution to tackling climate change, UK, 2008.Google Scholar
Baldauf, M. and Preidel, B.W.: Book of abstracts. In Proceedings of the Third International Symposium on Electrocatalysis: Workshop, Electrocatalysis in Direct and Indirect Methanol PEM Fuel Cells, Portoroz, Slovenia, (1999).Google Scholar
Baldauf, M. and Preidel, W.: Experimental results on the direct electrochemical oxidation of methanol in PEM fuel cells. J. Appl. Electrochem. 31(7), 781 (2001).Google Scholar
Yamaaha Motor Co: http://www.yamaha motor.co.jp/motorshow/html/0003.html.Google Scholar
Yamaaha Motor Co: http://www.yamaha motor.co.jp.Google Scholar
Steckmann, K.: Extending EV range with direct methanol fuel cells. World Electric Vehicle J. 3, 1 (2009).CrossRefGoogle Scholar
Malhotra, S.: Onboard battery charging with Oorja's DMFC for material handling vehicles. Fuel Cells Bulletin 2012(3), 12 (2012).Google Scholar
Gancs, L., Hult, B.N., Hakim, N., and Mukerjee, S.: The impact of Ru contamination of a Pt/C electrocatalyst on its oxygen-reducing activity. Electrochem. Solid State Lett. 10(9), B150 (2007).Google Scholar
Lima, A., Coutanceau, C., Leger, J.M., and Lamy, C.: Investigation of ternary catalysts for methanol electrooxidation. J. Appl. Electrochem. 31(4), 379 (2001).Google Scholar
Qi, Z. and Kaufman, A.: Open circuit voltage and methanol crossover in DMFCs. J. Power Sources 110(1), 177 (2002).CrossRefGoogle Scholar
Wang, J.T., Wasmus, S., and Savinell, R.F.: Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. J. Electrochem. Soc. 143(4), 1233 (1996).Google Scholar
Scott, K., Taama, W.M., Argyropoulos, P., and Sundmacher, K.: The impact of mass transport and methanol crossover on the direct methanol fuel cell. J. Power Sources 83(1–2), 204 (1999).Google Scholar
Zelenay, P., Brosha, E., Davey, J., Eickes, C., Fields, R., Garzon, F., Neergat, M., Pivovar, B., Purdy, G., Ramsey, J., Rowley, J., Wilson, M., and Zhu, Y.: Direct methanol fuel cells, In Hydrogen, Fuel cells, and Infrastructure Technologies, FY progress report, 1 (2003).Google Scholar
Fu, Y.Z., Manthiram, A., and Guiver, M.D.: Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells. Electrochem. Commun. 8(8), 1386 (2006).Google Scholar
Fu, Y.Z., Manthiram, A., and Guiver, M.D.: Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for DMFCs. Electrochem. Solid State Lett. 10(4), B70 (2007).CrossRefGoogle Scholar
Fu, Y.Z., Manthiram, A., and Guiver, M.D.: Acid-base blend membranes based on 2-amino-benzimidazole and sulfonated poly(ether ether ketone) for direct methanol fuel cells. Electrochem. Commun. 9(5), 905 (2007).CrossRefGoogle Scholar
Lee, J.K., Li, W., Manthiram, A., and Guiver, M.D.: Blend membranes based on acid-base interactions for operation at high methanol concentrations. J. Electrochem. Soc. 156(1), B46 (2009).Google Scholar
Manthiram, A.: Materials and manufacturing challenges of direct methanol fuel cells. The WSTIAC Quarterly. 9, 69 (2010).Google Scholar
McLean, G.F., Niet, T., Prince-Richard, S., and Djilali, N.: An assessment of alkaline fuel cell technology. Int. J. Hydrogen Energy 27(5), 507 (2002).Google Scholar
Cifrain, M. and Kordesch, K.V.: Advances, aging mechanism and lifetime in AFCs with circulating electrolytes. J. Power Sources 127(1–2), 234 (2004).Google Scholar
Wang, Y., Li, L., Hu, L., Zhuang, L., Lu, J., and Xu, B.: A feasibility analysis for alkaline membrane direct methanol fuel cell: Thermodynamic disadvantages versus kinetic advantages. Electrochem. Commun. 5(8), 662 (2003).CrossRefGoogle Scholar
Pourbaix, M., Atlas D’equilibres Electrochimiques (Gautheie-Villars, Paris, 1963).Google Scholar
Chen, W., Sun, G., Liang, Z., Mao, Q., Li, H., Wang, G., Xin, Q., Chang, H., Pak, C., and Seung, D.: The stability of a PtRu/C electrocatalyst at anode potentials in a direct methanol fuel cell. J. Power Sources 160(2), 933 (2006).Google Scholar
Antolini, E.: The problem of Ru dissolution from Pt–Ru catalysts during fuel cell operation: Analysis and solutions. J. Solid State Electr. 15(3), 455 (2011).CrossRefGoogle Scholar
Chang, K-H. and Hu, C-C.: Oxidative synthesis of RuOx nH2O with ideal capacitive characteristics for supercapacitors. J. Electrochem. Soc. 151(7), A958 (2004).Google Scholar
Park, Y., Lee, B., Kim, C., Oh, Y., Nam, S., and Park, B.: The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes. J. Mater. Res. 24(09), 2762 (2009).CrossRefGoogle Scholar
Chung, Y., Pak, C., Park, G-S., Jeon, W.S., Kim, J-R., Lee, Y., Chang, H., and Seung, D.: Understanding a degradation mechanism of direct methanol fuel cell using TOF-SIMS and XPS. J. Phys. Chem. C 112(1), 313 (2007).CrossRefGoogle Scholar
Lai, C-M., Lin, J-C., Hsueh, K-L., Hwang, C-P., Tsay, K-C., Tsai, L-D., and Peng, Y-M.: On the accelerating degradation of DMFC at highly anodic potential. J. Electrochem. Soc. 155(8), B843 (2008).Google Scholar
Lee, K-S., Jeon, T-Y., Yoo, S.J., Park, I-S., Cho, Y-H., Kang, S.H., Choi, K.H., and Sung, Y-E.: Effect of PtRu alloying degree on electrocatalytic activities and stabilities. Appl. Catal. B: Environmental 102(1–2), 334 (2011).Google Scholar
Hyun, M-S., Kim, S-K., Lee, B., Peck, D., Shul, Y., and Jung, D.: Effect of NaBH4 concentration on the characteristics of PtRu/C catalyst for the anode of DMFC prepared by the impregnation method. Catal. Today 132(1–4), 138 (2008).Google Scholar
Shimazaki, Y., Kobayashi, Y., Sugimasa, M., Yamada, S., Itabashi, T., Miwa, T., and Konno, M.: Preparation and characterization of long-lived anode catalyst for direct methanol fuel cells. J. Colloid Interface Sci. 300(1), 253 (2006).CrossRefGoogle ScholarPubMed
Tian, J., Sun, G., Jiang, L., Yan, S., Mao, Q., and Xin, Q.: Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells. Electrochem. Commun. 9(4), 563 (2007).Google Scholar
Cabello-Moreno, N., Crabb, E., Fisher, J., Russell, A., and Thompsett, D.: Improving the stability of PtRu catalysts for DMFC. Meeting Abstracts, 216th Meeting, Abstract 983. The Electrochemical Society, Pennington, NJ. MA2009–02(10), (2009).Google Scholar
Wang, S., Wang, X., and Jiang, S.P.: PtRu nanoparticles supported on 1-aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalytic activity for methanol oxidation. Langmuir 24(18), 10505 (2008).Google Scholar
Park, I-S., Li, W., and Manthiram, A.: Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells. J. Power Sources 195(20), 7078 (2010).CrossRefGoogle Scholar
Zheng, W., Suominen, A., and Tuominen, A.: Discussion on the challenges of DMFC catalyst loading process for mass production. Energy Procedia 28, 78 (2012).CrossRefGoogle Scholar
Song, S.Q., Liang, Z.X., Zhou, W.J., Sun, G.Q., Xin, Q., Stergiopoulos, V., and Tsiakaras, P.: Direct methanol fuel cells: The effect of electrode fabrication procedure on MEAs structural properties and cell performance. J. Power Sources 145(2), 495 (2005).Google Scholar
Xie, J., Garzon, F., Zawodzinski, T., and Smith, W.: Ionomer segregation in composite MEAs and its effect on polymer electrolyte fuel cell performance. J. Electrochem. Soc. 151(7), A1084 (2004).CrossRefGoogle Scholar
Park, H.S., Cho, Y.H., Cho, Y.H., Park, I.S., Jung, N., Ahn, M., and Sung, Y.E.: Modified decal method and its related study of microporous layer in PEM fuel cells. J. Electrochem. Soc. 155(5), B455 (2008).CrossRefGoogle Scholar
Krishnan, N.N., Prabhuram, J., Hong, Y.T., Kim, H.J., Yoon, K., Ha, H.Y., Lim, T.H., and Kim, S.K.: Fabrication of MEA with hydrocarbon based membranes using low temperature decal method for DMFC. Int. J. Hydrogen Energy 35(11), 5647 (2010).CrossRefGoogle Scholar
Dinh, H. and Gennet, T.: Novel approach to advanced direct methanol fuel cell anode catalysts. (2009); p. 112. http://www.1.eere.enrgy.gov/hydrogenans fuelcells/pdfs/dinh-gennet topic 5a dmfc nrel kickoff.pdf.Google Scholar
Technical Plans, Multi-year Research, Development and Demonstration Plan, Fuel cells (2012).Google Scholar
Aasberg-Petersen, K., Nielsen, C.S., Dybkjær, I., and Perregaard, J.: Large Scale Methanol Production from Natural Gas. http://www.topsoe.com/business_areas/methanol/Downloads.aspx.Google Scholar
Specht, M., Bandi, A., Baumgart, F., Murray, C.N., and Gretz, J.: Synthesis of methanol from biomass/CO2 resources. In Greenhouse Gas Control Technologies, Eliasson, B., Riemer, P.W.F., and Wokaun, A. eds.; Pergamon: Amsterdam, 1999; p. 723.Google Scholar
Methanol, Health and Safety Guide (HSG 105): International Programme on Chemical Safety (IPCS). (1997). http://www.inchem.org/.Google Scholar
Evaluation of the Fate and Transport of Methanol in the Environment. http://www.methanol.org/Environment/Resources/Environment/MP-Methanol-Fate.aspx.Google Scholar
Solvent miscibility Table, https://www.erowid.org/.Google Scholar
The Introduction of Euro 5 and Euro 6 Emissions Regulations for Light Passenger and Commercial Vehicles. http://www.rsa.ie/.Google Scholar
Clean Alternative Fuels: Methanol. http://www.afdc.energy.gov/.Google Scholar
Dangerous Goods Panel: Methanol Micro Fuel Cell. http://www.icao.int/safety/.Google Scholar
Personal email correspondence with John A Paterson, JA Paterson, LLC, Lawyer.Google Scholar
Analysis of the Scope of Energy Subsidies and Suggestions for the G-20 Initiative, http://www.oecd.org/env/.Google Scholar