Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T05:02:27.044Z Has data issue: false hasContentIssue false

Metal–organic frameworks for carbon dioxide capture

Published online by Cambridge University Press:  28 September 2020

Claudio Pettinari*
Affiliation:
School of Pharmacy, University of Camerino, via S. Agostino 1, Camerino, Macerata62032, Italy Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Via Madonna del Piano 10, Sesto Fiorentino50019, Italy
Alessia Tombesi
Affiliation:
School of Pharmacy, University of Camerino, via S. Agostino 1, Camerino, Macerata62032, Italy
*
Address all correspondence to Claudio Pettinari at claudio.pettinari@unicam.it
Get access

Abstract

Detailed report on MOFs for CO2 adsorption on the basis of ligands employed, OMSs, and structures. Systematic report on the high- and low-pressure CO2 capture. Report on the mechanism of CO2 capture.

A review on the promising field of MOF-based carbon capture and storage is presented. We discuss here the main features of MOFs applicable for CO2 capture and separation, the linker functionalization role, and the most important CO2-binding sites as also the most efficient and significant technologies, and a systematic report on the high- and low-pressure CO2 capture.

Type
Review Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brian, K.: Earth's CO2 Passes the 400 PPM Threshold-Maybe Permanently, 2016. Available at: www.scientificamerican.com/article/earth-s-co2-passes-the-400-ppm-threshold-maybe-permanently/ (accessed March 15, 2020).Google Scholar
COM(2011) 112: The Roadmap for Moving to a Competitive Low Carbon Economy in 2050 European Environmental Agency, 2011. Available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0112:FIN:EN:PDF (accessed March 3, 2020).Google Scholar
Allen, M.R., Dube, O.P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., and Zickfeld, K.: Framing and context. In: Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 2018. Available at: www.ipcc.ch/sr15/chapter/chapter-1/ (accessed February 9, 2020).Google Scholar
Sakakura, T., Choi, J.C., and Yasuda, H.: Transformation of carbon dioxide. Chem. Rev. 107, 2365 (2007).CrossRefGoogle ScholarPubMed
Zheng, Q., Farrauto, R., and Chau Nguyen, A.: Adsorption and methanation of flue gas CO2 with dual functional catalytic materials: A parametric study. Ind. Eng. Chem. Res. 55, 6768 (2016).CrossRefGoogle Scholar
Duyar, M.S., Treviño, M.A.A., and Farrauto, R.J.: Dual function materials for CO2 capture and conversion using renewable H2. Appl. Catal. B Environ. 168–169, 370 (2015).CrossRefGoogle Scholar
Yoon, Y., Hall, A.S., and Surendranath, Y.: Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew. Chem. Int. Ed. 55, 15282 (2016).CrossRefGoogle ScholarPubMed
Williams, P.J.L.B. and Laurens, L.M.L.: Microalgae as biodiesel and biomass feedstocks: Review and analysis of the biochemistry, energetics and economics. Energy Environ. Sci. 3, 554 (2010).CrossRefGoogle Scholar
Hepburn, C., Adlen, E., Beddington, J., Carter, E.A., Fuss, S., Mac Dowell, N., Minx, J.C., Smith, P., and Williams, C.K.: The technological and economic prospects for CO2 utilization and removal. Nature 575, 87 (2019).CrossRefGoogle ScholarPubMed
Razzaq, R., Li, C., Usman, M., Suzuki, K., and Zhang, S.: A highly active and stable Co4N/γ-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG). Chem. Eng. J. 262, 1090 (2015).CrossRefGoogle Scholar
Aziz, M., Jalil, A., Triwahyono, S., Mukti, R., Taufiq-Yap, Y., Sazegar, M., and Bahru, J.: Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl. Catal. B Environ. 147, 359 (2014).CrossRefGoogle Scholar
Du, G., Lim, S., Yang, Y., Wang, C., Pfefferle, L., and Haller, G.L.: Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction. J. Catal. 249, 370 (2007).CrossRefGoogle Scholar
Zhang, X., Zhang, X., Dong, H., Zhao, Z., Zhang, S., and Huang, Y.: Carbon capture with ionic liquids: Overview and progress. Energy Environ. Sci. 5, 6668 (2012).CrossRefGoogle Scholar
Choi, S., Drese, J.H., and Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2, 796 (2009).CrossRefGoogle ScholarPubMed
Mobley, P.D., Rayer, A.V., Tanthana, J., Gohndrone, T.R., Soukri, M., Coleman, L.J.I., and Lail, M.: CO2 capture using fluorinated hydrophobic solvents. Ind. Eng. Chem. Res. 56, 11958 (2017).CrossRefGoogle Scholar
Han, Y. and Ho, W.S.W.: Recent advances in polymeric membranes for CO2 capture. Chin. J. Chem. Eng. 26, 2238 (2018).CrossRefGoogle Scholar
Wahby, A., Silvestre-Albero, J., Sepúlveda-Escribano, A., and Rodríguez-Reinoso, F.: CO2 adsorption on carbon molecular sieves. Microporous Mesoporous Mater. 164, 280 (2012).CrossRefGoogle Scholar
Maina, J.W., Pozo-Gonzalo, C., Kong, L., Schütz, J., Hill, M., and Dumée, L.F.: Metal organic framework based catalysts for CO2 conversion. Mater. Horiz. 4, 345 (2017).CrossRefGoogle Scholar
Ozdemir, J., Mosleh, I., Abolhassani, M., and Greenlee, L.F.: Covalent organic frameworks for the capture, fixation, or reduction of CO2. Front. Energy Res. 7, 77 (2019).CrossRefGoogle Scholar
Zhou, H.C.J. and Kitagawa, S.: Metal-organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415 (2014).CrossRefGoogle Scholar
Cao, S.: Metal-organic frameworks: A new class of crystalline porous materials. Johnson Matthey Technol. Rev. 59, 123 (2015).CrossRefGoogle Scholar
Seyyedi, B. and Bordiga, S.: Metal-Organic Frameworks:A New Class of Crystalline Porous Materials Hybrid Materials for Storage and Purification of Small Gaseous Molecules. LAP LAMBERT Academic Publishing, Riga, Latvia, (2014).Google Scholar
Long, J.R. and Yaghi, O.M.: The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1213 (2009).CrossRefGoogle ScholarPubMed
Eddaoudi, M., Moler, D.B., Li, H., Chen, B., Reineke, T.M., O'Keeffe, M., and Yaghi, O.M.: Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319 (2001).CrossRefGoogle ScholarPubMed
Zhou, H.C., Long, J.R., and Yaghi, O.M.: Introduction to metal-organic frameworks. Chem. Rev. 112, 673 (2012).CrossRefGoogle ScholarPubMed
Lu, W., Wei, Z., Gu, Z.Y., Liu, T.F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle, T., Bosch, M., and Zhou, H.C.: Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43, 5561 (2014).CrossRefGoogle ScholarPubMed
Ding, M., Flaig, R.W., Jiang, H.L., and Yaghi, O.M.: Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 48, 2783 (2019).CrossRefGoogle ScholarPubMed
Stock, N. and Biswas, S.: Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933 (2012).CrossRefGoogle ScholarPubMed
Tranchemontagne, D.J., Mendoza-Cortés, J.L., O'Keeffe, M., and Yaghi, O.M.: Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1257 (2009).CrossRefGoogle ScholarPubMed
Kim, J., Chen, B., Reineke, T.M., Li, H., Eddaoudi, M., Moler, D.B., O'Keeffe, M., and Yaghi, O.M.: Assembly of metal-organic frameworks from large organic and inorganic secondary building units: New examples and simplifying principles for complex structures. J. Am. Chem. Soc. 123, 8239 (2001).CrossRefGoogle ScholarPubMed
Mokhatab, S., Poe, W.A., Mak, J.Y., Mokhatab, S., Poe, W.A., and Mak, J.Y.: Natural gas dehydration .In Handbook of Natural Gas Transmission and Process, Ch. 7, pp. 223 (S, Mokhatab, S, Poe and J.Y., Mak, eds. (Elsevier, Killington, 2015).Google Scholar
Sircar, S.: Heat of adsorption on heterogeneous adsorbents. Appl. Surf. Sci. 252, 647 (2005).CrossRefGoogle Scholar
Czepirski, L. and JagieŁŁo, J.: Virial-type thermal equation of gas-solid adsorption. Chem. Eng. Sci. 44, 797 (1989).CrossRefGoogle Scholar
Inglezakis, V.J. and Zorpas, A.A.: Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalin. Water Treat. 39, 149 (2012).CrossRefGoogle Scholar
Lee, W.R., Jo, H., Yang, L.M., Lee, H., Ryu, D.W., Lim, K.S., Song, J.H., Min, D.Y., Han, S.S., Seo, J.G., Park, Y.K., Moon, D., and Hong, C.S.: Exceptional CO2 working capacity in a heterodiamine-grafted metal-organic framework. Chem. Sci. 6, 3697 (2015).CrossRefGoogle Scholar
McDonald, T.M., Mason, J.A., Kong, X., Bloch, E.D., Gygi, D., Dani, A., Crocellà, V., Giordanino, F., Odoh, S.O., Drisdell, W.S., Vlaisavljevich, B., Dzubak, A.L., Poloni, R., Schnell, S.K., Planas, N., Lee, K., Pascal, T., Wan, L.F., D., Prendergast, J.B., Neaton, B., Smit, J.B., Kortright, L., Gagliardi, S., Bordiga, J.A., Renner, and J.R., Long: Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303 (2015).CrossRefGoogle ScholarPubMed
Mcguirk, C.M., Siegelman, R.L., Drisdell, W.S., Runčevski, T., Milner, P.J., Oktawiec, J., Wan, L.F., Su, G.M., Jiang, H.Z.H., Reed, D.A., Gonzalez, M.I., Prendergast, D., and Long, J.R.: Cooperative adsorption of carbon disulfide in diamine-appended metal-organic frameworks. Nat. Commun 9, 5133 (2018).CrossRefGoogle ScholarPubMed
Principe, I.A. and Fletcher, A.J.: Adsorption selectivity of CO2 over CH4, N2 and H2 in melamine–resorcinol–formaldehyde xerogels. Adsorption 23, 723735 (2020).CrossRefGoogle Scholar
Mukherjee, S., Kumar, A., and Zaworotko, M.J.: 2-Metal-organic framework based carbon capture and purification technologies for clean environment. In Metal-Organic Frameworks (MOFs) for Environmental Applications, (Elsevier, Amsterdam, 2019), pp. 561.CrossRefGoogle Scholar
Myers, A.L. and Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121 (1965).CrossRefGoogle Scholar
Myers, A.L.: Thermodynamics of adsorption. In Chemical Thermodynamics for Industry (Royal Society of Chemistry, 2007).Google Scholar
Helfferich, F.G.: Principles of adsorption and adsorption processes. AIChE J. 31, 523 (1985).CrossRefGoogle Scholar
Misra, D.N.: New adsorption isotherm for heterogeneous surfaces. J. Chem. Phys. 52, 5499 (1970).CrossRefGoogle Scholar
Parmar, B., Patel, P., Pillai, R.S., Tak, R.K., Kureshy, R.I., Khan, N.H., and Suresh, E.: Cycloaddition of CO2 with an epoxide-bearing oxindole scaffold by a metal–organic framework-based heterogeneous catalyst under ambient conditions. Inorg. Chem. 58, 10084 (2019).CrossRefGoogle ScholarPubMed
Ge, X. and Ma, S.: CO2 capture and separation of metal–organic frameworks. Mater. Carbon Capture 2050, 5 (2020).CrossRefGoogle Scholar
Loiseau, T., Lecroq, L., Volkringer, C., Marrot, J., Ferey, G., Haouas, M., Taulelle, F., Bourrelly, S., Llewellyn, P.L., and Latroche, M.: MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units. J. Am. Chem. Soc. 128, 10223 (2006).CrossRefGoogle ScholarPubMed
Xue, M., Ma, S., Jin, Z., Schaffino, R.M., Zhu, G.S., Lobkovsky, E.B., Qiu, S.L., and Chen, B.: Robust metal-organic framework enforced by triple-framework interpenetration exhibiting high H2 storage density. Inorg. Chem. 47, 6825 (2008).CrossRefGoogle ScholarPubMed
Britt, D., Furukawa, H., Wang, B., Glover, T.G., and Yaghi, O.M.: Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc. Natl. Acad. Sci. USA 106, 20637 (2009).CrossRefGoogle ScholarPubMed
Chen, B., Ma, S., Zapata, F., Fronczek, F.R., Lobkovsky, E.B., and Zhou, H.C.: Rationally designed micropores within a metal−organic framework for selective sorption of gas molecules. Inorg. Chem. 46, 1233 (2007).CrossRefGoogle ScholarPubMed
Yuan, B., Ma, D., Wang, X., Li, Z., Li, Y., Liu, H., and He, D.: A microporous, moisture-stable, and amine-functionalized metal-organic framework for highly selective separation of CO2 from CH4. Chem. Commun. 48, 1135 (2012).CrossRefGoogle ScholarPubMed
Sircar, S.: Pressure swing adsorption. Ind. Eng. Chem. Res. 41, 1389 (2002).CrossRefGoogle Scholar
Kikkinides, E.S., Yang, R.T., and Cho, S.H.: Concentration and recovery of CO2 from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 32, 2714 (1993).CrossRefGoogle Scholar
Chou, C.T. and Chen, C.Y.: Carbon dioxide recovery by vacuum swing adsorption. Sep. Purif. Technol. 39, 51 (2004).CrossRefGoogle Scholar
Zhang, J., Webley, P.A., and Xiao, P.: Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Convers. Manage. 49, 346 (2008).CrossRefGoogle Scholar
Mason, J.A., Sumida, K., Herm, Z.R., Krishna, R., and Long, J.R.: Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030 (2011).CrossRefGoogle Scholar
Greathouse, J.A. and Allendorf, M.D.: The interaction of water with MOF-5 simulated by molecular dynamics. J. Am. Chem. Soc. 128, 10678 (2006).CrossRefGoogle ScholarPubMed
Liu, J., Wang, Y., Benin, A.I., Jakubczak, P., Willis, R.R., and LeVan, M.D.: CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir 26, 14301 (2010).CrossRefGoogle ScholarPubMed
Devic, T. and Serre, C.: High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 43, 6097 (2014).CrossRefGoogle ScholarPubMed
Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O'Keeffe, M., and Yaghi, O.M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 103, 10186 (2006).CrossRefGoogle ScholarPubMed
Demessence, A., D'Alessandro, D.M., Foo, M.L., and Long, J.R.: Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 8784 (2009).CrossRefGoogle Scholar
Han, S.S., Jung, D.H., and Heo, J.: Interpenetration of metal organic frameworks for carbon dioxide capture and hydrogen purification: Good or bad? J. Phys. Chem. C 117, 71 (2013).CrossRefGoogle Scholar
Zhang, W., Huang, H., Zhong, C., and Liu, D.: Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks: A combined experimental and molecular simulation study. Phys. Chem. Chem. Phys. 14, 2317 (2012).CrossRefGoogle ScholarPubMed
Mohamed, M.H., Elsaidi, S.K., Wojtas, L., Pham, T., Forrest, K.A., Tudor, B., Space, B., and Zaworotko, M.J.: Highly selective CO2 uptake in uninodal 6-connected ‘mmo’ nets based upon MO4 (M = Cr, Mo) pillars. J. Am. Chem. Soc. 134, 19556 (2012).CrossRefGoogle Scholar
Ahmad, M., Sharma, M.K., Das, R., Poddar, P., and Bharadwaj, P.K.: Syntheses, crystal structures, and magnetic properties of metal-organic hybrid materials of Co(II) using flexible and rigid nitrogen-based ditopic ligands as spacers. Cryst. Growth Des. 12, 1571 (2012).CrossRefGoogle Scholar
Kim, T.K., Lee, K.J., Choi, M., Park, N., Moon, D., and Moon, H.R.: Metal-organic frameworks constructed from flexible ditopic ligands: Conformational diversity of an aliphatic ligand. New J. Chem. 37, 4130 (2013).CrossRefGoogle Scholar
Zhao, Y., Wu, H., Emge, T.J., Gong, Q., Nijem, N., Chabal, Y.J., Kong, L., Langreth, D.C., Liu, H., Zeng, H., and Li, J.: Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures. Chem. Eur. J. 17, 5101 (2011).CrossRefGoogle ScholarPubMed
Liu, H., Zhao, Y., Zhang, Z., Nijem, N., Chabal, Y.J., Zeng, H., and Li, J.: The effect of methyl functionalization on microporous metal-organic frameworks’ capacity and binding energy for carbon dioxide adsorption. Adv. Funct. Mater. 21, 4754 (2011).CrossRefGoogle Scholar
Ahnfeldt, T., Guillou, N., Gunzelmann, D., Margiolaki, I., Loiseau, T., Férey, G., Senker, J., and Stock, N.: [Al4(OH)2(OCH3)4(H2N- Bdc)3]⋅xH2O: A 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. Angew. Chem. Int. Ed. 48, 5163 (2009).CrossRefGoogle Scholar
Singh Dhankhar, S., Sharma, N., Kumar, S., Dhilip Kumar, T.J., and Nagaraja, C.M.: Rational design of a bifunctional, two-fold interpenetrated Zn(II)-metal–organic framework for selective adsorption of CO2 and efficient aqueous phase sensing of 2,4,6-trinitrophenol. Chem. Eur. J. 23, 16204 (2017).CrossRefGoogle ScholarPubMed
Fracaroli, A.M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F., Reimer, J.A., and Yaghi, O.M.: Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. J. Am. Chem. Soc. 136, 8863 (2014).CrossRefGoogle ScholarPubMed
Deng, H., Grunder, S., Cordova, K.E., Valente, C., Furukawa, H., Hmadeh, M., Gándara, F., Whalley, A.C., Liu, Z., Asahina, S., Kazumori, H., O'Keeffe, M., Terasaki, O., Stoddart, J.F., and Yaghi, O.M.: Large-pore apertures in a series of metal-organic frameworks. Science 336, 1018 (2012).CrossRefGoogle Scholar
Vismara, R., Tuci, G., Mosca, N., Domasevitch, K.V., Di Nicola, C., Pettinari, C., Giambastiani, G., Galli, S., and Rossin, A.: Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorg. Chem. Front. 6, 533 (2019).CrossRefGoogle Scholar
Li, Y., Zhang, X., Lan, J., Xu, P., and Sun, J.: Porous Zn(Bmic)(AT) MOF with abundant amino groups and open metal sites for efficient capture and transformation of CO2. Inorg. Chem. 58, 13917 (2019).CrossRefGoogle ScholarPubMed
Lee, W.R., Hwang, S.Y., Ryu, D.W., Lim, K.S., Han, S.S., Moon, D., Choi, J., and Hong, C.S.: Diamine-functionalized metal-organic framework: Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism. Energy Environ. Sci. 7, 744 (2014).CrossRefGoogle Scholar
Vaidhyanathan, R., Iremonger, S.S., Dawson, K.W., and Shimizu, G.K.H.: An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem. Commun. 5230 (2009).CrossRefGoogle Scholar
Siegelman, R.L., McDonald, T.M., Gonzalez, M.I., Martell, J.D., Milner, P.J., Mason, J.A., Berger, A.H., Bhown, A.S., and Long, J.R.: Controlling cooperative CO2 adsorption in diamine-appended Mg2(dobpdc) metal-organic frameworks. J. Am. Chem. Soc. 139, 10526 (2017).CrossRefGoogle ScholarPubMed
Flaig, R.W., Osborn Popp, T.M., Fracaroli, A.M., Kapustin, E.A., Kalmutzki, M.J., Altamimi, R.M., Fathieh, F., Reimer, J.A., and Yaghi, O.M.: The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions. J. Am. Chem. Soc. 139, 12125 (2017).CrossRefGoogle Scholar
Huang, X., Lu, J., Wang, W., Wei, X., and Ding, J.: Experimental and computational investigation of CO2 capture on amine grafted metal-organic framework NH2-MIL-101. Appl. Surf. Sci. 371, 307 (2016).CrossRefGoogle Scholar
Fu, Q., Ding, J., Wang, W., Lu, J., and Huang, Q.: Carbon dioxide adsorption over amine-functionalized MOFs. Energy Proc. 142, 2152 (2017).CrossRefGoogle Scholar
Xian, S., Wu, Y., Wu, J., Wang, X., and Xiao, J.: Enhanced dynamic CO2 adsorption capacity and CO2/CH4 selectivity on polyethylenimine-impregnated UiO-66. Ind. Eng. Chem. Res. 54, 11151 (2015).CrossRefGoogle Scholar
Chowdhury, P., Mekala, S., Dreisbach, F., and Gumma, S.: Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. Microporous Mesoporous Mater. 152, 246 (2012).CrossRefGoogle Scholar
Munusamy, K., Sethia, G., Patil, D.V., Somayajulu Rallapalli, P.B., Somani, R.S., and Bajaj, H.C.: Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): Volumetric measurements and dynamic adsorption studies. Chem. Eng. J. 195–196, 359 (2012).CrossRefGoogle Scholar
Nandi, S., Haldar, S., Chakraborty, D., and Vaidhyanathan, R.: Strategically designed azolyl-carboxylate MOFs for potential humid CO2 capture. J. Mater. Chem. A 5, 535 (2017).CrossRefGoogle Scholar
Wang, H.H., Jia, L.N., Hou, L., Shi, W.J., Zhu, Z., and Wang, Y.Y.: A new porous MOF with two uncommon metal-carboxylate-pyrazolate clusters and high CO2/N2 selectivity. Inorg. Chem. 54, 1841 (2015).CrossRefGoogle ScholarPubMed
Li, Y.Z., Wang, H.H., Yang, H.Y., Hou, L., Wang, Y.Y., and Zhu, Z.: An uncommon carboxyl-decorated metal–organic framework with selective gas adsorption and catalytic conversion of CO2. Chem. Eur. J. 24, 865 (2018).CrossRefGoogle ScholarPubMed
Shao, Y.L., Cui, Y.H., Gu, J.Z., Wu, J., Wang, Y.W., and Kirillov, A.M.: Exploring biphenyl-2,4,4′-tricarboxylic acid as a flexible building block for the hydrothermal self-assembly of diverse metal-organic and supramolecular networks. CrystEngComm 18, 765 (2016).CrossRefGoogle Scholar
He, T., Zhang, Y.-Z., Wu, H., Kong, X.-J., Liu, X.-M., Xie, L.-H., Dou, Y., and Li, J.-R.: Functionalized base-stable metal-organic frameworks for selective CO2 adsorption and proton conduction. ChemPhysChem 18, 3245 (2017).CrossRefGoogle ScholarPubMed
Zhou, F., Zhou, J., Gao, X., Kong, C., and Chen, L.: Facile synthesis of MOFs with uncoordinated carboxyl groups for selective CO2 capture via postsynthetic covalent modification. RSC Adv. 7, 3713 (2017).CrossRefGoogle Scholar
Bolotov, V.A., Kovalenko, K.A., Samsonenko, D.G., Han, X., Zhang, X., Smith, G.L., McCormick, L.J., Teat, S.J., Yang, S., Lennox, M.J., Henley, A., Besley, E., Fedin, V.P., Dybtsev, D.N., and Schröder, M.: Enhancement of CO2 uptake and selectivity in a metal-organic framework by the incorporation of thiophene functionality. Inorg. Chem. 57, 5074 (2018).CrossRefGoogle Scholar
Wu, T., Shen, L., Luebbers, M., Hu, C., Chen, Q., Ni, Z., and Masel, R.I.: Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups. Chem. Commun. 46, 6120 (2010).CrossRefGoogle ScholarPubMed
Atzori, C., Lomachenko, K.A., Øien-ØDegaard, S., Lamberti, C., Stock, N., Barolo, C., and Bonino, F.: Disclosing the properties of a new Ce(III)-Based MOF: Ce2(NDC)3(DMF)2. Cryst. Growth Des. 19, 787 (2019).CrossRefGoogle Scholar
Gassensmith, J.J., Furukawa, H., Smaldone, R.A., Forgan, R.S., Botros, Y.Y., Yaghi, O.M., and Stoddart, J.F.: Strong and reversible binding of carbon dioxide in a green metal-organic framework. J. Am. Chem. Soc. 133, 15312 (2011).CrossRefGoogle Scholar
Pettinari, C., Galli, S., and Ta, A.: Coordination polymers and metal-organic frameworks built up with poly(tetrazolate)ligands. Coord. Chem. Rev. 372, 1 (2018).Google Scholar
Baima, J., Macchieraldo, R., Pettinari, C., and Casassa, S.: Ab initio investigation of the affinity of novel bipyrazolate-based MOFs towards H2 and CO2. CrystEngComm 17, 448 (2015).CrossRefGoogle Scholar
Li, G.-P., Liu, G., Li, Y.-Z., Hou, L., Wang, Y.-Y., and Zhu, Z.: Uncommon pyrazoyl-carboxyl bifunctional ligand-based microporous lanthanide systems: Sorption and luminescent sensing properties. Inorg. Chem. 55, 3952 (2016).CrossRefGoogle ScholarPubMed
He, T., Zhang, Y.Z., Wang, B., Lv, X.L., Xie, L.H., and Li, J.R.: A base-resistant ZnII-based metal–organic framework: Synthesis, structure, postsynthetic modification, and gas adsorption. ChemPlusChem 81, 864 (2016).CrossRefGoogle Scholar
Vismara, R., Tuci, G., Tombesi, A., Domasevitch, K.V., Di Nicola, C., Giambastiani, G., Chierotti, M.R., Bordignon, S., Gobetto, R., Pettinari, C., Rossin, A., and Galli, S.: Tuning carbon dioxide adsorption affinity of zinc(II) MOFs by mixing bis(pyrazolate) ligands with N-containing tags. ACS Appl. Mater. Interfaces 11, 26956 (2019).CrossRefGoogle ScholarPubMed
Pettinari, C., Tǎbǎcaru, A., Boldog, I., Domasevitch, K.V., Galli, S., and Masciocchi, N.: Novel coordination frameworks incorporating the 4,4′-bipyrazolyl ditopic ligand. Inorg. Chem. 51, 5235 (2012).CrossRefGoogle ScholarPubMed
Mosca, N., Vismara, R., Fernandes, J.A., Tuci, G., DiNicola, C., Domasevitch, K.V., Giacobbe, C., Giambastiani, G., Pettinari, C., Aragones-Anglada, M., Moghadam, P.Z., Fairen-Jimenez, D., Rossin, A., and Galli, S.: Nitro-functionalized bis(pyrazolate) metal-organic frameworks as carbon dioxide capture materials under ambient conditions. Chem. Eur. J. 24, 13170 (2018).CrossRefGoogle ScholarPubMed
Desai, A.V., Sharma, S., Let, S., and Ghosh, S.K.: N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coord. Chem. Rev. 395, 146 (2019).CrossRefGoogle Scholar
Park, J., Yuan, D., Pham, K.T., Li, J.R., Yakovenko, A., and Zhou, H.C.: Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. J. Am. Chem. Soc. 134, 99 (2012).CrossRefGoogle ScholarPubMed
Song, C., Ling, Y., Jin, L., Zhang, M., Chen, D.L., and He, Y.: CO2 adsorption of three isostructural metal-organic frameworks depending on the incorporated highly polarized heterocyclic moieties. Dalton Trans. 45, 190 (2015).CrossRefGoogle Scholar
Vogiatzis, K.D., Mavrandonakis, A., Klopper, W., and Froudakis, G.E.: Ab initio study of the interactions between CO2 and N-containing organic heterocycles. ChemPhysChem 10, 374 (2009).CrossRefGoogle Scholar
An, J., Geib, S.J., and Rosi, N.L.: Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. J. Am. Chem. Soc. 131, 8376 (2009).CrossRefGoogle ScholarPubMed
An, J., Geib, S.J., and Rosi, N.L.: High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. J. Am. Chem. Soc. 132, 38 (2010).CrossRefGoogle Scholar
Wang, Y., Huang, N.Y., Shen, J.Q., Liao, P.Q., Chen, X.M., and Zhang, J.P.: Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 140, 38 (2018).CrossRefGoogle ScholarPubMed
Yang, Q., Wiersum, A.D., Llewellyn, P.L., Guillerm, V., Serre, C., and Maurin, G.: Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: A computational exploration. Chem. Commun. 47, 9603 (2011).CrossRefGoogle ScholarPubMed
Yang, J., Yan, X., Xue, T., and Liu, Y.: Enhanced CO2 adsorption on Al-MIL-53 by introducing hydroxyl groups into the framework. RSC Adv. 6, 55266 (2016).CrossRefGoogle Scholar
Wang, Z.J., Han, L.J., Gao, X.J., and Zheng, H.G.: Three Cd(II) MOFs with different functional groups: Selective CO2 capture and metal ions detection. Inorg. Chem. 57, 5232 (2018).CrossRefGoogle ScholarPubMed
Qian, J., Shen, J., Li, Q., Hu, Y., and Huang, S.: Selective adsorption behaviour of carbon dioxide in OH-functionalized metal-organic framework materials. CrystEngComm 19, 5346 (2017).CrossRefGoogle Scholar
Kanoo, P., Ghosh, A.C., Cyriac, S.T., and Maji, T.K.: A metal-organic framework with highly polar pore surfaces: Selective CO2 adsorption and guest-dependent on/off emission properties. Chem. Eur. J. 18, 237 (2012).CrossRefGoogle ScholarPubMed
Zheng, B., Bai, J., Duan, J., Wojtas, L., and Zaworotko, M.J.: Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. J. Am. Chem. Soc. 133, 748 (2011).CrossRefGoogle ScholarPubMed
Zheng, B., Yang, Z., Bai, J., Li, Y., and Li, S.: High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks. Chem. Commun. 48, 7025 (2012).CrossRefGoogle ScholarPubMed
Millward, A.R. and Yaghi, O.M.: Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998 (2005).CrossRefGoogle ScholarPubMed
Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, , Snurr, R.Q., O'Keeffe, M., Kim, J., and Yaghi, O.M.: Ultrahigh porosity in metal-organic frameworks. Science 329, 424 (2010).CrossRefGoogle ScholarPubMed
Chen, C., Zhang, M., Zhang, W., and Bai, J.: Stable amide-functionalized metal-organic framework with highly selective CO adsorption. Inorg. Chem. 58, 2729 (2019).CrossRefGoogle Scholar
Lu, Z., Xing, H., Sun, R., Bai, J., Zheng, B., and Li, Y.: Water stable metal-organic framework evolutionally formed from a flexible multidentate ligand with acylamide groups for selective CO2 adsorption. Cryst. Growth Des. 12, 1081 (2012).CrossRefGoogle Scholar
Benson, O., Da Silva, I., Argent, S.P., Cabot, R., Savage, M., Godfrey, H.G.W., Yan, Y., Parker, S.F., Manuel, P., Lennox, M.J., Mitra, T., Easun, T.L., Lewis, W., Blake, A.J., Besley, E., Yang, S., and Schröder, M.: Amides do not always work: Observation of guest binding in an amide-functionalized porous metal-organic framework. J. Am. Chem. Soc. 138, 14828 (2016).CrossRefGoogle ScholarPubMed
Moreau, F., Da Silva, I., Al Smail, N.H., Easun, T.L., Savage, M., Godfrey, H.G.W., Parker, S.F., Manuel, P., Yang, S., and Schröder, M.: Unravelling exceptional acetylene and carbon dioxide adsorption within a tetra-amide functionalized metal-organic framework. Nat. Commun. 8, 14085 (2017).CrossRefGoogle ScholarPubMed
Li, X.Y., Li, Y.Z., Yang, Y., Hou, L., Wang, Y.Y., and Zhu, Z.: Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes. Chem. Commun. 53, 12970 (2017).CrossRefGoogle Scholar
Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M., and Yaghi, O.M.: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939 (2008).CrossRefGoogle ScholarPubMed
Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O'Keeffe, M., and Yaghi, O.M.: Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131, 3875 (2009).CrossRefGoogle ScholarPubMed
Dau, P.V. and Cohen, S.M.: The influence of nitro groups on the topology and gas sorption property of extended Zn(II)-paddlewheel MOFs. CrystEngComm 15, 9304 (2013).CrossRefGoogle Scholar
Deng, H., Doonan, C.J., Furukawa, H., Ferreira, R.B., Towne, J., Knobler, C.B., Wang, B., and Yaghi, O.M.: Multiple functional groups of varying ratios in metal-organic frameworks. Science 327, 846 (2010).CrossRefGoogle ScholarPubMed
Panyarat, K., Surinwong, S., Prior, T.J., Konno, T., and Rujiwatra, A.: Crystal structures and gas adsorption behavior of new lanthanide-benzene-1,4-dicarboxylate frameworks. Microporous Mesoporous Mater. 251, 155 (2017).CrossRefGoogle Scholar
Yoon, M. and Moon, D.: New Zr (IV) based metal-organic framework comprising a sulfur-containing ligand: Enhancement of CO2 and H2 storage capacity. Microporous Mesoporous Mater. 215, 116 (2015).CrossRefGoogle Scholar
Parshamoni, S., Sanda, S., Jena, H.S., and Konar, S.: A copper based pillared-bilayer metal organic framework: Its synthesis, sorption properties and catalytic performance. Dalton Trans. 43, 7191 (2014).CrossRefGoogle ScholarPubMed
Bao, Z., Yu, L., Ren, Q., Lu, X., and Deng, S.: Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. J. Colloid Interface Sci. 353, 549 (2011).CrossRefGoogle ScholarPubMed
Biswas, S., Ahnfeldt, T., and Stock, N.: New functionalized flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) solids: Syntheses, characterization, sorption, and breathing behavior. Inorg. Chem. 50, 9518 (2011).CrossRefGoogle ScholarPubMed
Pal, T.K., De, D., Senthilkumar, S., Neogi, S., and Bharadwaj, P.K.: A partially fluorinated, water-stable Cu(II)-MOF derived via transmetalation: Significant gas adsorption with high CO2 selectivity and catalysis of Biginelli reactions. Inorg. Chem. 55, 7835 (2016).CrossRefGoogle ScholarPubMed
Noro, S. and Nakamura, T.: Fluorine-functionalized metal–organic frameworks and porous coordination polymers. NPG Asia Mater. 9, 433 (2017).CrossRefGoogle Scholar
Alduhaish, O., Lin, R.B., Wang, H., Li, B., Arman, H.D., Hu, T.L., and Chen, B.: Metal-organic framework with trifluoromethyl groups for selective C2H2 and CO2 adsorption. Cryst. Growth Des. 18, 4522 (2018).CrossRefGoogle Scholar
Gupta, A.K., De, D., Tomar, K., and Bharadwaj, P.K.: A Cu(II) metal-organic framework with significant H2 and CO2 storage capacity and heterogeneous catalysis for the aerobic oxidative amination of C(sp)-H bonds and Biginelli reactions. Dalton Trans. 47, 1624 (2018).CrossRefGoogle ScholarPubMed
Deria, P., Mondloch, J.E., Tylianakis, E., Ghosh, P., Bury, W., Snurr, R.Q., Hupp, J.T., and Farha, O.K.: Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: Synthesis and CO2 adsorption studies. J. Am. Chem. Soc. 135, 16801 (2013).CrossRefGoogle ScholarPubMed
Chen, K.J., Scott, H.S., Madden, D.G., Pham, T., Kumar, A., Bajpai, A., Lusi, M., Forrest, K.A., Space, B., Perry, J.J., and Zaworotko, M.J.: Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem 1, 753 (2016).CrossRefGoogle Scholar
Kondo, A., Noguchi, H., Ohnishi, S., Kajiro, H., Tohdoh, A., Hattori, Y., Xu, W.C., Tanaka, H., Kanoh, H., and Kaneko, K.: Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO2 molecules. Nano Lett. 6, 2581 (2006).CrossRefGoogle Scholar
Nugent, P., Rhodus, V., Pham, T., Tudor, B., Forrest, K., Wojtas, L., Space, B., and Zaworotko, M.: Enhancement of CO2 selectivity in a pillared pcu mom platform through pillar substitution. Chem. Commun. 49, 1606 (2013).CrossRefGoogle Scholar
Elsaidi, S.K., Mohamed, M.H., Schaef, H.T., Kumar, A., Lusi, M., Pham, T., Forrest, K.A., Space, B., Xu, W., Halder, G.J., Liu, J., Zaworotko, M.J., and Thallapally, P.K.: Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas. Chem. Commun. 51, 15530 (2015).CrossRefGoogle ScholarPubMed
Burd, S.D., Ma, S., Perman, J.A., Sikora, B.J., Snurr, R.Q., Thallapally, P.K., Tian, J., Wojtas, L., and Zaworotko, M.J.: Highly selective carbon dioxide uptake by [Cu(bpy)2(SiF6)] (bpy-1 = 4,4′-bipyridine; Bpy = 1,2-bis(4-pyridyl)ethene). J. Am. Chem. Soc. 134, 3663 (2012).CrossRefGoogle Scholar
Noro, S.I., Fukuhara, K., Hijikata, Y., Kubo, K., and Nakamura, T.: Rational synthesis of a porous copper(II) coordination polymer bridged by weak Lewis-base inorganic monoanions using an anion-mixing method. Inorg. Chem. 52, 5630 (2013).CrossRefGoogle ScholarPubMed
Iremonger, S.S., Liang, J., Vaidhyanathan, R., Martens, I., Shimizu, G.K.H., Thomas, D.D., Aghaji, M.Z., Yeganegi, S., and Woo, T.K.: Phosphonate monoesters as carboxylate-like linkers for metal organic frameworks. J. Am. Chem. Soc. 133, 20048 (2011).CrossRefGoogle ScholarPubMed
Zhao, X., Bell, J.G., Tang, S.F., Li, L., and Thomas, K.M.: Kinetic molecular sieving, thermodynamic and structural aspects of gas/vapor sorption on metal organic framework [Ni1.5(4,4′-bipyridine)1.5(H3L)(H2O)3][H2O]7 where H6L = 2,4,6-trimethylbenzene-1,3,5-triyl tris(methylene)triphosphonic acid. J. Mater. Chem. A 4, 1353 (2016).CrossRefGoogle Scholar
Llewellyn, P.L., Garcia-Rates, M., Gaberová, L., Miller, S.R., Devic, T., Lavalley, J.C., Bourrelly, S., Bloch, E., Filinchuk, Y., Wright, P.A., Serre, C., Vimont, A., and Maurin, G.: Structural origin of unusual CO2 adsorption behavior of a small-pore aluminum bisphosphonate MOF. J. Phys. Chem. C 119, 4208 (2015).CrossRefGoogle Scholar
Dau, P.V., Polanco, L.R., and Cohen, S.M.: Dioxole functionalized metal-organic frameworks. Dalton Trans. 42, 4013 (2013).CrossRefGoogle ScholarPubMed
Kim, T.K. and Suh, M.P.: Selective CO2 adsorption in a flexible non-interpenetrated metal-organic framework. Chem. Commun. 47, 4258 (2011).CrossRefGoogle Scholar
Henke, S., Schmid, R., Grunwaldt, J.D., and Fischer, R.A.: Flexibility and sorption selectivity in rigid metal-organic frameworks: The impact of ether-functionalised linkers. Chem. Eur. J. 16, 14296 (2010).CrossRefGoogle ScholarPubMed
Grajciar, L., Wiersum, A.D., Llewellyn, P.L., Chang, J.S., and Nachtigall, P.: Understanding CO2 adsorption in CuBTC MOF: Comparing combined DFT-ab initio calculations with microcalorimetry experiments. J. Phys. Chem. C 115, 17925 (2011).CrossRefGoogle Scholar
Dietzel, P.D.C., Johnsen, R.E., Fjellvåg, H., Bordiga, S., Groppo, E., Chavan, S., and Blom, R.: Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chem. Commun. 5125 (2008).CrossRefGoogle ScholarPubMed
Queen, W.L., Brown, C.M., Britt, D.K., Zajdel, P., Hudson, M.R., and Yaghi, O.M.: Site-specific CO2 adsorption and zero thermal expansion in an anisotropic pore network. J. Phys. Chem. C 115, 24915 (2011).CrossRefGoogle Scholar
Queen, W.L., Hudson, M.R., Bloch, E.D., Mason, J.A., Gonzalez, M.I., Lee, J.S., Gygi, D., Howe, J.D., Lee, K., Darwish, T.A., James, M., Peterson, V.K., Teat, S.J., Smit, B., Neaton, J.B., Long, J.R., and Brown, C.M.: Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu. Zn). Chem. Sci. 5, 4569 (2014).CrossRefGoogle Scholar
Liang, L., Liu, C., Jiang, F., Chen, Q., Zhang, L., Xue, H., Jiang, H.L., Qian, J., Yuan, D., and Hong, M.: Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat. Commun. 8, 1 (2017).CrossRefGoogle ScholarPubMed
Chen, Y.F., Nalaparaju, A., Eddaoudi, M., and Jiang, J.W.: CO2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study. Langmuir 28, 3903 (2012).CrossRefGoogle ScholarPubMed
Yazaydin, , Snurr, R.Q., Park, T.H., Koh, K., Liu, J., LeVan, M.D., Benin, A.I., Jakubczak, P., Lanuza, M., Galloway, D.B., Low, J.J., and Willis, R.R.: Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J. Am. Chem. Soc. 131, 18198 (2009).CrossRefGoogle ScholarPubMed
Valenzano, L., Civalleri, B., Chavan, S., Palomino, G.T., Areán, C.O., and Bordiga, S.: Computational and experimental studies on the adsorption of CO, N2, and CO2 on Mg-MOF-74. J. Phys. Chem. C 114, 11185 (2010).CrossRefGoogle Scholar
Liu, Y., Hu, J., Ma, X., Liu, J., and Lin, Y.S.: Mechanism of CO2 adsorption on Mg/DOBDC with elevated CO2 loading. Fuel 181, 340 (2016).CrossRefGoogle Scholar
McDonald, T.M., Lee, W.R., Mason, J.A., Wiers, B.M., Hong, C.S., and Long, J.R.: Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056 (2012).CrossRefGoogle Scholar
Vlaisavljevich, B., Odoh, S.O., Schnell, S.K., Dzubak, A.L., Lee, K., Planas, N., Neaton, J.B., Gagliardi, L., and Smit, B.: CO2 induced phase transitions in diamine-appended metal-organic frameworks. Chem. Sci. 6, 5177 (2015).CrossRefGoogle ScholarPubMed
Xie, H.B., Zhou, Y., Zhang, Y., and Johnson, J.K.: Reaction mechanism of monoethanolamine with CO2 in aqueous solution from molecular modeling. J. Phys. Chem. A 114, 11844 (2010).CrossRefGoogle Scholar
Planas, N., Dzubak, A.L., Poloni, R., Lin, L.C., McManus, A., McDonald, T.M., Neaton, J.B., Long, J.R., Smit, B., and Gagliardi, L.: The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. J. Am. Chem. Soc. 135, 7402 (2013).CrossRefGoogle Scholar
Mason, J.A., McDonald, T.M., Bae, T.H., Bachman, J.E., Sumida, K., Dutton, J.J., Kaye, S.S., and Long, J.R.: Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787 (2015).CrossRefGoogle ScholarPubMed
Arstad, B., Fjellvåg, H., Kongshaug, K.O., Swang, O., and Blom, R.: Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14, 755 (2008).CrossRefGoogle Scholar
Lin, Q., Wu, T., Zheng, S.T., Bu, X., and Feng, P.: Single-walled polytetrazolate metal-organic channels with high density of open nitrogen-donor sites and gas uptake. J. Am. Chem. Soc. 134, 784 (2012).CrossRefGoogle ScholarPubMed
Maji, T.K., Uemura, K., Chang, H.C., Matsuda, R., and Kitagawa, S.: Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption. Angew. Chem. Int. Ed. 43, 3269 (2004).CrossRefGoogle ScholarPubMed
Wriedt, M., Sculley, J.P., Yakovenko, A.A., Ma, Y., Halder, G.J., Balbuena, P.B., and Zhou, H.C.: Low-energy selective capture of carbon dioxide by a pre-designed elastic single-molecule trap. Angew. Chem. Int. Ed. 51, 9804 (2012).CrossRefGoogle ScholarPubMed
Chen, B., Ma, S., Zapata, F., Fronczek, F.R., Lobkovsky, E.B., and Zhou, H.C.: Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules. Inorg. Chem. 46, 1233 (2007).CrossRefGoogle ScholarPubMed
Li, J.R., Yu, J., Lu, W., Sun, L.B., Sculley, J., Balbuena, P.B., and Zhou, H.C.: Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nat. Commun. 4, 1 (2013).Google Scholar
Zhao, P., Fang, H., Mukhopadhyay, S., Li, A., Rudić, S., McPherson, I.J., Tang, C.C., Fairen-Jimenez, D., Tsang, S.C.E., and Redfern, S.A.T.: Structural dynamics of a metal–organic framework induced by CO2 migration in its non-uniform porous structure. Nat. Commun. 10, 1 (2019).Google ScholarPubMed
Kukulka, W., Cendrowski, K., Michalkiewicz, B., and Mijowska, E.: MOF-5 derived carbon as material for CO2 absorption. RSC Adv. 9, 18527 (2019).CrossRefGoogle Scholar
Wang, M., Lawal, A., Stephenson, P., Sidders, J., and Ramshaw, C.: Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 89, 1609 (2011).CrossRefGoogle Scholar
Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45, 5435 (2006).CrossRefGoogle Scholar
Lee, K.B. and Sircar, S.: Removal and recovery of compressed CO2 from flue gas by a novel thermal swing chemisorption process. AIChE J. 54, 2293 (2008).CrossRefGoogle Scholar
Bhattacharyya, D. and Miller, D.C.: Post-combustion CO2 capture technologies — a review of processes for solvent-based and sorbent-based CO2 capture. Curr. Opin. Chem. Eng. 17, 78 (2017).CrossRefGoogle Scholar
Wang, Y., Zhao, L., Otto, A., Robinius, M., and Stolten, D.: A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Proc. 114, 650 (2017).CrossRefGoogle Scholar
Higman, C.: Gasification. In Combustion Engineering Issues for Solid Fuel Systems, Ch. 11, (Academic Press, Elsevier Inc., 2008), pp. 423468.CrossRefGoogle Scholar
Damle, A.: An introduction to the utilization of membrane technology in the production of clean and renewable power .In Membranes for Clean and Renewable Power Applications, A, Gugliuzza and A, Basile, eds. (Woodhead publishing, Elsevier Ltd, 2013), pp. 343.Google Scholar
Plasynski, S.I., Litynski, J.T., McIlvried, H.G., and Srivastava, R.D.: Progress and new developments in carbon capture and storage. CRC Crit. Rev. Plant Sci. 28, 123 (2009).CrossRefGoogle Scholar
Agarwal, A., Biegler, L.T., and Zitney, S.E.: Superstructure-based optimal synthesis of pressure swing adsorption cycles for precombustion CO2 capture. Ind. Eng. Chem. Res. 49, 5066 (2010).CrossRefGoogle Scholar
Salles, F., Kolokolov, D.I., Jobic, H., Maurin, G., Llewellyn, P.L., Devic, T., Serre, C., and Ferey, G.: Adsorption and diffusion of H2 in the MOF type systems MIL-47(V) and MIL-53(cr): A combination of microcalorimetry and QENS experiments with molecular simulations. J. Phys. Chem. C 113, 7802 (2009).CrossRefGoogle Scholar
Dietzel, P.D.C., Besikiotis, V., and Blom, R.: Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J. Mater. Chem. 19, 7362 (2009).CrossRefGoogle Scholar
Herm, Z.R., Swisher, J.A., Smit, B., Krishna, R., and Long, J.R.: Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 133, 5664 (2011).CrossRefGoogle ScholarPubMed
Tranchemontagne, D.J., Hunt, J.R., and Yaghi, O.M.: Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64, 8553 (2008).CrossRefGoogle Scholar
Sumida, K., Hill, M.R., Horike, S., Dailly, A., and Long, J.R.: Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J. Am. Chem. Soc. 1, 15120 (2009).CrossRefGoogle Scholar
Choi, H.J., Dinca, M., and Long, J.R.: Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). J. Am. Chem. Soc. 130, 7848 (2008).CrossRefGoogle Scholar
Demessence, A., D'alessandro, D.M., Foo, L., and Long, J.R.: Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 29 (2009).CrossRefGoogle Scholar
Caskey, S.R., Wong-Foy, A.G., and Matzger, A.J.: Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870 (2008).CrossRefGoogle Scholar
Perez, E.V., Balkus, K.J., Ferraris, J.P., and Musselman, I.H.: Mixed-matrix membranes containing MOF-5 for gas separations. J. Membr. Sci. 328, 165 (2009).CrossRefGoogle Scholar
Wang, S., Yang, L., He, G., Shi, B., Li, Y., Wu, H., Zhang, R., Nunes, S., and Jiang, Z.: Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 49, 1071 (2020).CrossRefGoogle ScholarPubMed
Kakaras, E., Koumanakos, A., Doukelis, A., Giannakopoulos, D., and Vorrias, I.: Oxyfuel boiler design in a lignite-fired power plant. Fuel 86, 2144 (2007).CrossRefGoogle Scholar
Boot-Handford, M.E., Abanades, J.C., Anthony, E.J., Blunt, M.J., Brandani, S., Dowell, N.M., Fernández, J.R., Fernández, F., Ferrari, M.-C., Gross, R., Hallett, J.P., Haszeldine, R.S., Heptonstall, P., Lyngfelt, A., Makuch, Z., Mangano, E., Porter, R.T.J., Pourkashanian, M., G.T., Rochelle, N., Shah, J.G., Yap, and P.S., Fennell: : Carbon capture and storage update. Energy Environ. Sci. 7, 130 (2014).CrossRefGoogle Scholar
Wall, T., Liu, Y., Spero, C., Elliott, L., Khare, S., Rathnam, R., Zeenathal, F., Moghtaderi, B., Buhre, B., Sheng, C., Gupta, R., Yamada, T., Makino, K., and Yu, J.: An overview on oxyfuel coal combustion-state of the art research and technology development. Chem. Eng. Res. Des. 87, 1003 (2009).CrossRefGoogle Scholar
Kather, A. and Scheffknecht, G.: The oxycoal process with cryogenic oxygen supply. Naturwissenschaften 96, 993 (2009).CrossRefGoogle ScholarPubMed
Murray, L.J., Dinca, M., Yano, J., Chavan, S., Bordiga, S., Brown, C.M., and Long, J.R.: Highly-selective and reversible O2 binding in Cr3 (1,3,5-benzenetricarboxylate)2. J. Am. Chem. Soc. 132, 7856 (2010).CrossRefGoogle ScholarPubMed
Bloch, E.D., Murray, L.J., Queen, W.L., Chavan, S., Maximoff, S.N., Bigi, J.P., Krishna, R., Peterson, V.K., Grandjean, F., Long, G.J., Smit, B., Bordiga, S., Brown, C.M., and Long, J.R.: Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites. J. Am. Chem. Soc. 133, 14814 (2011).CrossRefGoogle Scholar
Lackner, K.S.: The thermodynamics of direct air capture of carbon dioxide. Energy 50, 38 (2013).CrossRefGoogle Scholar
Sanz-Pérezpérez, E.S., Murdock, C.R., Didas, S.A., and Jones, C.W.: Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840 (2016).CrossRefGoogle Scholar
Lanckner, K.S., Grimes, P., and Ziock, H.J.: 24th Annual Technical Conference on Coal Utilization and Fuel Systems, Clearwater, FL (US), Carbon Dioxide Extraction from Air: Is It An Option? Report n. LA-UR-99-583 (1999).Google Scholar
Kumar, A., Madden, D.G., Lusi, M., Chen, K.-J., Daniels, E.A., Curtin, T., Perry, J.J., and Zaworotko, M.J.: Direct air capture of CO2 by physisorbent materials. Angew. Chem. Int. Ed. 54, 14372 (2015).CrossRefGoogle ScholarPubMed
McDonald, T.M., Ram Lee, W., Mason, J.A., Wiers, B.M., Seop Hong, C., and Long, J.R.: Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal−organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056 (2012).CrossRefGoogle Scholar
Xue, M., Liu, Y., Schaffino, R.M., Xiang, S., Zhao, X., Zhu, G.S., Qiu, S.L., and Chen, B.: New prototype isoreticular metal-organic framework Zn4O(FMA)3 for gas storage. Inorg. Chem. 48, 4649 (2009).CrossRefGoogle Scholar
Botas, J.A., Calleja, G., Sánchez-Sánchez, M., and Orcajo, M.G.: Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26, 5300 (2010).CrossRefGoogle ScholarPubMed
Llewellyn, P.L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., De Weireld, G., Chang, J., Hong, D., Hwang, Y.K., and Jhung, S.H.: High uptakes of CO2 and CH4 in mesoporous metals organic frameworks MIL-100 and MIL-101. Langmuir 24, 7245 (2008).CrossRefGoogle Scholar
Furukawa, H., Miller, M.A., and Yaghi, O.M.: Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal-organic frameworks. J. Mater. Chem. 17, 3197 (2007).CrossRefGoogle Scholar
Gedrich, K., Senkovska, I., Klein, N., Stoeck, U., Henschel, A., Lohe, M.R., Baburin, I.A., Mueller, U., and Kaskel, S.: A highly porous metal-organic framework with open nickel sites. Angew. Chem. Int. Ed. 49, 8489 (2010).CrossRefGoogle ScholarPubMed
Prasad, T.K. and Suh, M.P.: Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design. Chem. Eur. J. 18, 8673 (2012).CrossRefGoogle ScholarPubMed
Ruang, D.A.N., Rsud, A., and Johannes, P.W.Z.: Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J. Am. Chem. Soc. 3, 126 (2019).Google Scholar
Yuan, D., Zhao, D., Sun, D., and Zhou, H.C.: An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357 (2010).CrossRefGoogle ScholarPubMed
Mu, B., Schoenecker, P.M., and Walton, K.S.: Gas adsorption study on mesoporous metal-organic framework UMCM-1. J. Phys. Chem. C 114, 6464 (2010).CrossRefGoogle Scholar
Tan, C., Yang, S., Champness, N.R., Lin, X., Blake, A.J., Lewis, W., and Schröder, M.: High capacity gas storage by a 4,8-connected metal-organic polyhedral framework. Chem. Commun. 47, 4487 (2011).CrossRefGoogle ScholarPubMed
Duan, J., Yang, Z., Bai, J., Zheng, B., Li, Y., and Li, S.: Highly selective CO2 capture of an agw-type metal-organic framework with inserted amides: Experimental and theoretical studies. Chem. Commun. 48, 3058 (2012).CrossRefGoogle ScholarPubMed
Alsmail, N.H., Suyetin, M., Yan, Y., Cabot, R., Krap, C.P., , J., Easun, T.L., Bichoutskaia, E., Lewis, W., Blake, A.J., and Schröder, M.: Analysis of high and selective uptake of CO2 in an oxamide-containing {Cu2(OOCR)4}-based metal-organic framework. Chem. Eur. J. 20, 7317 (2014).CrossRefGoogle Scholar
Park, Y.K., Sang, B.C., Kim, H., Kim, K., Won, B.H., Choi, K., Choi, J.S., Ahn, W.S., Won, N., Kim, S., Dong, H.J., Choi, S.H., Kim, G.H., Cha, S.S., Young, H.J., Jin, K.Y., and Kim, J.: Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew. Chem. Int. Ed. 46, 8230 (2007).CrossRefGoogle ScholarPubMed
Moellmer, J., Moeller, A., Dreisbach, F., Glaeser, R., and Staudt, R.: High pressure adsorption of hydrogen, nitrogen, carbon dioxide and methane on the metal-organic framework HKUST-1. Microporous Mesoporous Mater. 138, 140 (2011).CrossRefGoogle Scholar
Liang, Z., Marshall, M., and Chaffee, A.L.: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23, 2785 (2009).CrossRefGoogle Scholar
Zheng, B., Liu, H., Wang, Z., Yu, X., Yi, P., and Bai, J.: Porous NbO-type metal-organic framework with inserted acylamide groups exhibiting highly selective CO2 capture. CrystEngComm 15, 3517 (2013).CrossRefGoogle Scholar
Xiang, Z., Hu, Z., Cao, D., Yang, W., Lu, J., Han, B., and Wang, W.: Metal-organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping. Angew. Chem. Int. Ed. 50, 491 (2011).CrossRefGoogle ScholarPubMed
Lu, Z., Xing, H., Sun, R., Bai, J., Zheng, B., and Li, Y.: State water stable metal–organic framework evolutionally formed from a flexible multidentate ligand with acylamide groups for selective CO2 adsorption. Cryst. Growth Des. 12, 1081 (2012).CrossRefGoogle Scholar
Sumida, K., Rogow, D.L., Mason, J.A., Mcdonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T., and Long, R.: Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724 (2012).CrossRefGoogle ScholarPubMed
Zhao, D., Yuan, D., Sun, D., and Zhou, H.C.: Stabilization of metal-organic frameworks with high surface areas by the incorporation of mesocavities with microwindows. J. Am. Chem. Soc. 131, 9186 (2009).CrossRefGoogle ScholarPubMed
Hamon, L., Jolimaître, E., and Pirngruber, G.D.: CO2 and CH4 separation by adsorption using Cu-BTC metal-organic framework. Ind. Eng. Chem. Res. 49, 7497 (2010).CrossRefGoogle Scholar
Lan, J., Cao, D., Wang, W., and Smit, B.: Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano. 4, 4225 (2010).CrossRefGoogle ScholarPubMed
Férey, C., Mellot-Draznieks, C., Serre, C., Millange, F., Dutour, J., Surblé, S., and Margiolaki, I.: Chemistry: A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040 (2005).CrossRefGoogle ScholarPubMed
Zhang, Z., Huang, S., Xian, S., Xi, H., and Li, Z.: Adsorption equilibrium and kinetics of CO2 on chromium terephthalate MIL-101. Energy Fuels 25, 835 (2011).CrossRefGoogle Scholar
Llewellyn, P.L., Bourrelly, S., Serre, C., Vimont, A., Daturi, M., Hamon, L., De Weireld, G., Chang, J.-S., Hong, D.-Y., Hwang, Y.K., Jhung, S.H., and Férey, G.: High uptakes of CO2 and CH4 in mesoporous metalsorganic frameworks MIL-100 and MIL-101. Langmuir 24, 72457250 (2008).CrossRefGoogle ScholarPubMed
Li, H., Eddaoudi, M., O'Keeffe, M., and Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276 (1999).CrossRefGoogle Scholar
Farha, O.K., Yazaydin, , Eryazici, I., Malliakas, C.D., Hauser, B.G., Kanatzidis, M.G., Nguyen, S.T., Snurr, R.Q., and Hupp, J.T.: De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944 (2010).CrossRefGoogle ScholarPubMed
Xue, D.X., Wang, Q., and Bai, J.: Amide-functionalized metal–organic frameworks: Syntheses, structures and improved gas storage and separation properties. Coord. Chem. Rev. 378, 2 (2019).CrossRefGoogle Scholar
Lee, Y.G., Moon, H.R., Cheon, Y.E., and Suh, M.P.: A comparison of the H2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites: [{Zn 2(abtc)(dmf)2}3] and [{Cu2(abtc) (dmf)2}3] versus [{Cu2(abtc)}3]. Angew. Chem. Int. Ed. 47, 7741 (2008).CrossRefGoogle Scholar
Yang, S., Lin, X., Lewis, W., Suyetin, M., Bichoutskaia, E., Parker, J.E., Tang, C.C., Allan, D.R., Rizkallah, P.J., Hubberstey, P., Champness, N.R., Mark Thomas, K., Blake, A.J., and Schröder, M.: A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. Nat. Mater. 11, 710 (2012).CrossRefGoogle ScholarPubMed
Galli, S., Maspero, A., Giacobbe, C., Palmisano, G., Nardo, L., Comotti, A., Bassanetti, I., Sozzani, P., and Masciocchi, N.: When long bis(pyrazolates) meet late transition metals: Structure, stability and adsorption of metal-organic frameworks featuring large parallel channels. J. Mater. Chem. A 2, 12208 (2014).CrossRefGoogle Scholar
Li, B., Zhang, Z., Li, Y., Yao, K., Zhu, Y., Deng, Z., Yang, F., Zhou, X., Li, G., Wu, H., Nijem, N., Chabal, Y.J., Lai, Z., Han, Y., Shi, Z., Feng, S., and Li, J.: Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. Angew. Chem. Int. Ed. 51, 1412 (2012).CrossRefGoogle ScholarPubMed
Xiang, S., He, Y., Zhang, Z., Wu, H., Zhou, W., Krishna, R., and Chen, B.: Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 3, 954 (2012). doi:10.1038/ncomms1956.CrossRefGoogle ScholarPubMed
Wang, X.J., Li, P.Z., Chen, Y., Zhang, Q., Zhang, H., Chan, X.X., Ganguly, R., Li, Y., Jiang, J., and Zhao, Y.: A rationally designed nitrogen-rich metal-organic framework and its exceptionally high CO2 and H2 uptake capability. Sci. Rep. 3, 1 (2013).Google Scholar
Hu, Y., Xiang, S., Zhang, W., Zhang, Z., Wang, L., Bai, J., and Chen, B.: A new MOF-505 analog exhibiting high acetylene storage. Chem. Commun. 7551 (2009).CrossRefGoogle ScholarPubMed
Zhao, X., Bu, X., Zhai, Q.G., Tran, H., and Feng, P.: Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake. J. Am. Chem. Soc. 137, 1396 (2015).CrossRefGoogle ScholarPubMed
Song, C., He, Y., Li, B., Ling, Y., Wang, H., Feng, Y., Krishna, R., and Chen, B.: Enhanced CO2 sorption and selectivity by functionalization of a NbO-type metal-organic framework with polarized benzothiadiazole moieties. Chem. Commun. 50, 12105 (2014).CrossRefGoogle ScholarPubMed
Qin, J.S., Du, D.Y., Li, W.L., Zhang, J.P., Li, S.L., Su, Z.M., Wang, X.L., Xu, Q., Shao, K.Z., and Lan, Y.Q.: N-rich zeolite-like metal-organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chem. Sci. 3, 2114 (2012).CrossRefGoogle Scholar
Si, X., Jiao, C., Li, F., Zhang, J., Wang, S., Liu, S., Li, Z., Sun, L., Xu, F., Gabelica, Z., and Schick, C.: High and selective CO2 uptake, H2 storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1. Energy Environ. Sci. 4, 4522 (2011).CrossRefGoogle Scholar
Liao, P., Chen, H., Zhou, D., Liu, S., and He, C.: Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high- humidity flue gas. Energy Environ. Sci. 8, 1011 (2015).CrossRefGoogle Scholar
Paper, R.: Carbon dioxide capture on metal-organic frameworks with amide-decorated pores. Nanochem. Res. 3, 62 (2018).Google Scholar
Henke, S., Schneemann, A., Wütscher, A., and Fischer, R.A.: Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. J. Am. Chem. Soc. 134, 9464 (2012).CrossRefGoogle Scholar
Chen, C., Zheng, S., Wei, Z., Cao, C., Wang, H., Wang, D., Jiang, J., Fenske, D., and Su, C.: A robust metal–organic framework combining open metal sites and polar groups for methane purification and CO2/fluorocarbon capture. Chem. Eur. J. 23, 4060 (2017).CrossRefGoogle ScholarPubMed
Liao, P.Q., Chen, H., Zhou, D.D., Liu, S.Y., He, C.T., Rui, Z., Ji, H., Zhang, J.P., and Chen, X.M.: Monodentate hydroxide as a super strong yet reversible active site for CO2 capture from high-humidity flue gas. Energy Environ. Sci. 8, 1011 (2015).CrossRefGoogle Scholar
Mcdonald, T.M., Lee, W.R., Mason, J.A., Wiers, B.M., Hong, C.S., and Long, R.: Capture of carbon dioxide from air and flue gas in the alkylamine- appended metal–organic framework mmen-Mg2( dobpdc ). J. Am. Chem. Soc. 134, 7056 (2012).CrossRefGoogle Scholar
Guo, X., Zhu, G., Li, Z., Sun, F., Yang, Z., and Qiu, S.: A lanthanide metal-organic framework with high thermal stability and available Lewis-acid metal sites. Chem. Commun. 1, 3172 (2006).CrossRefGoogle Scholar
Jiang, Z.R., Wang, H., Hu, Y., Lu, J., and Jiang, H.L.: Polar group and defect engineering in a metal-organic framework: Synergistic promotion of carbon dioxide sorption and conversion. ChemSusChem 8, 878 (2015).CrossRefGoogle Scholar
Forrest, K.A., Pham, T., and Space, B.: Comparing the mechanism and energetics of CO2 sorption in the SIFSIX series. CrystEngComm 19, 3338 (2017).CrossRefGoogle Scholar
Links, D.A., Huang, Y., Qin, W., Li, Z., and Li, Y.: Enhanced stability and CO2 affinity of a UiO-66 type metal–organic framework decorated with dimethyl groups. Dalton Trans. 41, 9283 (2012).Google Scholar
Panda, T., Pachfule, P., Chen, Y., Jiang, J., and Banerjee, R.: Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide. Chem. Commun. 47, 2011 (2011).CrossRefGoogle ScholarPubMed
Kim, S.N., Kim, J., Kim, H.Y., Cho, H.Y., and Ahn, W.S.: Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catal. Today 204, 85 (2013).CrossRefGoogle Scholar
Li, Y.W., Li, J.R., Wang, L.F., Zhou, B.Y., Chen, Q., and Bu, X.H.: Microporous metal-organic frameworks with open metal sites as sorbents for selective gas adsorption and fluorescence sensors for metal ions. J. Mater. Chem. A 1, 495 (2013).CrossRefGoogle Scholar
Lin, J., Zhang, J., and Chen, X.: Nonclassical active site for enhanced gas sorption in porous coordination polymer. J. Am. Chem. Soc. 132, 6654 (2010).CrossRefGoogle ScholarPubMed
Song, C., Hu, J., Ling, Y., Feng, Y., Krishna, R., Chen, D.L., and He, Y.: The accessibility of nitrogen sites makes a difference in selective CO2 adsorption of a family of isostructural metal-organic frameworks. J. Mater. Chem. A 3, 19417 (2015).CrossRefGoogle Scholar
Online, V.A.: Screening and evaluating aminated cationic functional moieties for potential CO2 capture applications using an anionic MOF scaffold. Chem. Commun. 49, 11385 (2013).Google Scholar
Nicola, D., Chimiche, S., Chemistry, I.F.M., and Chimiche, S.: Tuning carbon dioxide adsorption affinity of zinc(II) MOFs by mixing bis(pyrazolate) ligands with N-. ACS Appl. Mater. Interfaces 28, 15606 (2019).Google Scholar
Seop, C.: Exceptional CO2 working capacity in a heterodiamine-grafted metal–organic framework. Chem. Sci. 6, 3697 (2015).Google Scholar
Foo, M.L., Matsuda, R., Hijikata, Y., Krishna, R., Sato, H., Horike, S., Hori, A., Duan, J., Sato, Y., Kubota, Y., Takata, M., and Kitagawa, S.: An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. J. Am. Chem. Soc. 138, 3022 (2016).CrossRefGoogle Scholar
An, J. and Rosi, N.L.: Tuning MOF CO2 adsorption properties via cation exchange. J. Am. Chem. Soc. 132, 5578 (2010).CrossRefGoogle ScholarPubMed
Yao, Q., Su, J., Cheung, O., Liu, Q., Hedin, N., and Zou, X.: Interpenetrated metal–organic frameworks and their uptake of CO2 at relatively low pressures. J. Mater. Chem. 22, 10345 (2012).CrossRefGoogle Scholar
Wei, Z., Su, C., Chen, C., Cao, C., Pan, M., and Wang, H.: Stepwise engineering of pore environments and enhancement of CO2/R22 adsorption capacity through dynamic spacer installation and functionality modification. Chem. Commun. 53, 11403 (2017).Google Scholar
Mcdonald, T.M., D'Alessandro, D.M., Krishna, R., and Long, J.R.: Enhanced carbon dioxide capture upon incorporation of N,N’-dimethylethylenediamine in the metal–organic framework CuBTTri. Chem. Sci. 2, 2022 (2011).CrossRefGoogle Scholar
Yazaydin, , Benin, A.I., Faheem, S.A., Jakubczak, P., Low, J.J., Richard, R.W., and Snurr, R.Q.: Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21, 1425 (2009).CrossRefGoogle Scholar
Lau, C.H., Babarao, R., and Hill, M.R.: A route to drastic increase of CO2 uptake in Zr metal organic framework UiO. Chem. Commun. 49, 3634 (2013).Google ScholarPubMed
An, J., Geib, S.J., and Rosi, N.L.: High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. J. Am. Chem. Soc. 132, 38 (2010).CrossRefGoogle Scholar
Park, H.J. and Suh, M.P.: Enhanced isosteric heat, selectivity, and uptake capacity of CO2 adsorption in a metal-organic framework by impregnated metal ions. Chem. Sci. 4, 685 (2013).CrossRefGoogle Scholar
Hong, D.H. and Paik, M.: Enhancing CO2 separation ability of a metal–organic framework by post-synthetic ligand exchange with flexible aliphatic carboxylates. Chem. Eur. J. 20, 426 (2014).CrossRefGoogle ScholarPubMed
Jiang, Z., Wang, H., Hu, Y., Lu, J., and Jiang, H.: Polar group and defect engineering in a metal–organic framework: Synergistic promotion of carbon dioxide sorption and conversion. ChemSusChem 5, 878 (2015).CrossRefGoogle Scholar
Shou-Tian, Z., B, T., Li, J., Zuo, Y., Pingyun Feng, T.W.F., and Bu, X.: Pore space partition and charge separation in cage-within-cage indium–organic frameworks with high CO2 uptake. J. Am. Chem. Soc. 132, 17062 (2010).Google Scholar
Chen, C., Wei, Z., Jiang, J., Fan, Y., Zheng, S., Cao, C., Li, Y., Fenske, D., and Su, C.: Precise modulation of the breathing behavior and pore surface in Zr-MOFs by reversible post-synthetic variable-spacer installation to fine-tune the expansion magnitude and sorption properties. Angew. Chem. Int. Ed. 55, 9932 (2016).CrossRefGoogle ScholarPubMed
Hu, Z., Faucher, S., Zhuo, Y., Sun, Y., Wang, S., and Zhao, D.: Combination of optimization and metalated-ligand exchange: An effective approach to functionalize UiO-66(Zr) MOFs for CO2 separation. Chem. Eur. J. 21, 17246 (2015).CrossRefGoogle ScholarPubMed
Hou, L., Shi, W.J., Wang, Y.Y., Guo, Y., Jin, C., and Shi, Q.Z.: A rod packing microporous metal-organic framework: Unprecedented ukv topology, high sorption selectivity and affinity for CO2. Chem. Commun. 47, 5464 (2011).CrossRefGoogle ScholarPubMed
Chen, S., Zhang, J., Wu, T., Feng, P., and Bu, X.: Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties. J. Am. Chem. Soc. 131, 16027 (2009).CrossRefGoogle ScholarPubMed
Cmarik, G.E., Kim, M., Cohen, S.M., and Walton, K.S.: Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir 28, 15606 (2012).CrossRefGoogle ScholarPubMed
Dhakshinamoorthy, A., Santiago-Portillo, A., Asiri, A.M., and Garcia, H.: Engineering UiO-66 metal organic framework for heterogeneous catalysis. ChemCatChem 11, 899 (2019).CrossRefGoogle Scholar
Cavka, J.H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., and Lillerud, K.P.: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850 (2008).CrossRefGoogle ScholarPubMed
Samanta, A., Furuta, T., and Li, J.: Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. J. Chem. Phys. 125, (084714 (2006).CrossRefGoogle ScholarPubMed
Tan, Y.X., He, Y.P., and Zhang, J.: Pore partition effect on gas sorption properties of an anionic metal-organic framework with exposed Cu coordination sites. Chem. Commun. 47, 10647 (2011).CrossRefGoogle Scholar
Kaye, S.S., Dailly, A., Yaghi, O.M., and Long, J.R.: Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J. Am. Chem. Soc. 129, 14176 (2007).CrossRefGoogle Scholar
Low, J.J., Benin, A.I., Jakubczak, P., Abrahamian, J.F., Faheem, S.A., and Willis, R.R.: Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration. J. Am. Chem. Soc. 131, 15834 (2009).CrossRefGoogle ScholarPubMed
Pettinari, C., Tabacaru, A., Boldog, I., Domasevitch, K.V., Galli, S., and Masciocchi, N.: Novel coordination frameworks incorporating the 4,4′-bipyrazolyl.pdf. Inorg. Chem. 51, 5235 (2012).CrossRefGoogle Scholar
Mosca, N., Vismara, R., Fernandes, J.A., Casassa, S., Domasevitch, K.V., Bailón-García, E., Maldonado-Hódar, F.J., Pettinari, C., and Galli, S.: CH3-tagged bis(pyrazolato)-based coordination polymers. Cryst. Growth Des. 17, 3854 (2017).CrossRefGoogle Scholar
Vismara, R., Tuci, G., Mosca, N., Domasevitch, K.V., Di Nicola, C., Pettinari, C., Giambastiani, G., Galli, S., and Rossin, A.: Amino-decorated bis(pyrazolate) metal-organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorg. Chem. Front. 6, 533 (2019).CrossRefGoogle Scholar
Lin, R.B., Chen, D., Lin, Y.Y., Zhang, J.P., and Chen, X.M.: A zeolite-like zinc triazolate framework with high gas adsorption and separation performance. Inorg. Chem. 51, 9950 (2012).CrossRefGoogle ScholarPubMed
Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., and Férey, G.: A new photoactive crystalline highly porous titanium(IV) dicarboxylate. J. Am. Chem. Soc. 131, 10857 (2009).CrossRefGoogle ScholarPubMed
Ding, M., Flaig, R.W., and Jiang, H.: Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem. Soc. Rev. 48, 2783 (2019).CrossRefGoogle ScholarPubMed
Nugent, P., Giannopoulou, E.G., Burd, S.D., Elemento, O., Giannopoulou, E.G., Forrest, K., Pham, T., Ma, S., Space, B., Wojtas, L., Eddaoudi, M., and Zaworotko, M.J.: Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80 (2013).CrossRefGoogle ScholarPubMed
Chen, B., Ma, S., Hurtado, E.J., Lobkovsky, E.B., and Zhou, H.C.: A triply interpenetrated microporous metal-organic framework for selective sorption of gas molecules. Inorg. Chem. 46, 8490 (2007).CrossRefGoogle ScholarPubMed
Lin, Y., Yan, Q., Kong, C., and Chen, L.: Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci. Rep. 3, 1 (2013).CrossRefGoogle ScholarPubMed
Ding, N., Li, H., Feng, X., Wang, Q., Wang, S., Ma, L., Zhou, J., and Wang, B.: Partitioning MOF-5 into confined and hydrophobic compartments for carbon capture under humid conditions. J. Am. Chem. Soc. 138, 10100 (2016).CrossRefGoogle ScholarPubMed
Vicent-Luna, J.M., Gutiérrez-Sevillano, J.J., Hamad, S., Anta, J., and Calero, S.: Role of ionic liquid [EMIM] [SCN] in the adsorption and diffusion of gases in metal−organic frameworks. ACS Appl. Mater. Interfaces 10, 29694 (2018).CrossRefGoogle ScholarPubMed
Kumar, R., Raut, D., Ramamurty, U., and Rao, C.N.R.: Remarkable improvement in the mechanical properties and CO2 uptake of mofs brought about by covalent linking to graphene. Angew. Chem. Int. Ed. 55, 7857 (2016).CrossRefGoogle Scholar
Chakraborty, A. and Maji, T.K.: Mg-MOF-74@SBA-15 hybrids: Synthesis, characterization, and adsorption properties. APL Mater. 2, 124107 (2014).CrossRefGoogle Scholar
Chen, C., Li, B., Zhou, L., Xia, Z., Feng, N., Ding, J., Wang, L., Wan, H., and Guan, G.: Synthesis of hierarchically structured hybrid materials by controlled self-assembly of metal-organic framework with mesoporous silica for CO2 adsorption. ACS Appl. Mater. Interfaces 9, 23060 (2017).CrossRefGoogle ScholarPubMed
Liu, S., Sun, L., Xu, F., Zhang, J., Jiao, C., Li, F., Li, Z., Wang, S., Wang, Z., Jiang, X., Zhou, H., Yang, L., and Schick, C.: Nanosized Cu-MOFs induced by graphene oxide and enhanced gas storage capacity. Energy Environ. Sci. 6, 818 (2013).CrossRefGoogle Scholar
Policicchio, A., Zhao, Y., Zhong, Q., Agostino, R.G., and Bandosz, T.J.: Cu-BTC/aminated graphite oxide composites as high-efficiency CO2 capture media. ACS Appl. Mater. Interfaces 6, 101 (2014).CrossRefGoogle ScholarPubMed
Yang, Y., Ge, L., Rudolph, V., and Zhu, Z.: In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. Dalton Trans. 43, 7028 (2014).CrossRefGoogle Scholar
Yehia, H., Pisklak, T.J., Ferraris, J.P., Balkus, K.J., and Musselman, I.H.: Methane facilitated transport using copper(II) biphenyl dicarboxylatetriethylenediamine/poly(3-acetoxyethylthiophene) mixed matrix membranes. Polym. Prepr. 45, 35 (2004).Google Scholar
Zornoza, B., Seoane, B., Zamaro, J.M., Téllez, C., and Coronas, J.: Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem 12, 2781 (2011).CrossRefGoogle ScholarPubMed
Seoane, B., Zamaro, J.M., Téllez, C., and Coronas, J.: Insight into the crystal synthesis, activation and application of ZIF-20. RSC Adv. 1, 917 (2011).CrossRefGoogle Scholar
Díaz, K., López-González, M., Del Castillo, L.F., and Riande, E.: Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly(1,4-phenylene ether-ether-sulfone) hybrid membranes. J. Membr. Sci. 383, 206 (2011).CrossRefGoogle Scholar
Adams, R., Carson, C., Ward, J., Tannenbaum, R., and Koros, W.: Metal organic framework mixed matrix membranes for gas separations. Microporous Mesoporous Mater. 131, 13 (2010).CrossRefGoogle Scholar
Yang, T., Xiao, Y., and Chung, T.S.: Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy Environ. Sci. 4, 4171 (2011).CrossRefGoogle Scholar
Liu, X.L., Li, Y.S., Zhu, G.Q., Ban, Y.J., Xu, L.Y., and Yang, W.S.: An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. Angew. Chem. Int. Ed. 50, 10636 (2011).CrossRefGoogle ScholarPubMed
Zhang, C., Dai, Y., Johnson, J.R., Karvan, O., and Koros, W.J.: High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 389, 34 (2012).CrossRefGoogle Scholar
Chen, X.Y., Hoang, V.T., Rodrigue, D., and Kaliaguine, S.: Optimization of continuous phase in amino-functionalized metal-organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation. RSC Adv. 3, 24266 (2013).CrossRefGoogle Scholar
Shahid, S. and Nijmeijer, K.: Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures. J. Membr. Sci. 470, 166 (2014).CrossRefGoogle Scholar
Abedini, R., Omidkhah, M., and Dorosti, F.: Hydrogen separation and purification with poly (4-methyl-1-pentyne)/MIL 53 mixed matrix membrane based on reverse selectivity. Int. J. Hydrogen Energy 39, 7897 (2014).CrossRefGoogle Scholar
Bushell, A.F., Attfield, M.P., Mason, C.R., Budd, P.M., Yampolskii, Y., Starannikova, L., Rebrov, A., Bazzarelli, F., Bernardo, P., Carolus Jansen, J., Lanč, M., Friess, K., Shantarovich, V., Gustov, V., and Isaeva, V.: Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci. 427, 48 (2013).CrossRefGoogle Scholar
Bae, T.H. and Long, J.R.: CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy Environ. Sci. 6, 3565 (2013).CrossRefGoogle Scholar
Merkel, T.C., Lin, H., Wei, X., and Baker, R.: Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 359, 126 (2010).CrossRefGoogle Scholar
Hu, J., Cai, H., Ren, H., Wei, Y., Xu, Z., Liu, H., and Hu, Y.: Mixed-matrix membrane hollow fibers of Cu3(BTC)2 MOF and polyimide for gas separation and adsorption. Ind. Eng. Chem. Res. 49, 12605 (2010).CrossRefGoogle Scholar
Li, L., Yao, J., Wang, X., Cheng, Y.B., and Wang, H.: ZIF-11/Polybenzimidazole composite membrane with improved hydrogen separation performance. J. Appl. Polym. Sci. 131 ( (2014).CrossRefGoogle Scholar
Basu, S., Khan, A.L., Cano-Odena, A., Liu, C., and Vankelecom, I.F.J.: Membrane-based technologies for biogas separations. Chem. Soc. Rev. 39, 750 (2010).CrossRefGoogle ScholarPubMed
Yang, T. and Chung, T.S.: High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int. J. Hydrogen Energy 38, 229 (2013).CrossRefGoogle Scholar
Nuhnen, A., Klopotowski, M., Tanh Jeazet, H.B., Sorribas, S., Zornoza, B., Téllez, C., Coronas, J., and Janiak, C.: High performance MIL-101(Cr)@6FDA-: MPD and MOF-199@6FDA- m PD mixed-matrix membranes for CO2/CH4 separation. Dalton Trans. 49, 1822 (2020).CrossRefGoogle Scholar
Li, T., Pan, Y., Peinemann, K.V., and Lai, Z.: Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Membr. Sci. 425–426, 235 (2013).CrossRefGoogle Scholar
Rezaei, F., Lawson, S., Hosseini, H., Thakkar, H., Hajari, A., Monjezi, S., and Rownaghi, A.A.: MOF-74 and UTSA-16 film growth on monolithic structures and their CO2 adsorption performance. Chem. Eng. J. 313, 1346 (2017).CrossRefGoogle Scholar
Kreno, L.E., Hupp, J.T., and Van Duyne, R.P.: Metal-organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 82, 8042 (2010).CrossRefGoogle ScholarPubMed