Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T17:29:33.898Z Has data issue: false hasContentIssue false

Thermal and mechanical issues of high-power laser diode degradation

Published online by Cambridge University Press:  12 July 2018

Jorge Souto*
Affiliation:
GdS Optronlab, Ed.LUCIA, Paseo de Belén 19, Universidad de Valladolid, 47011 Valladolid, Spain
José Luis Pura
Affiliation:
GdS Optronlab, Ed.LUCIA, Paseo de Belén 19, Universidad de Valladolid, 47011 Valladolid, Spain
Juan Jiménez
Affiliation:
GdS Optronlab, Ed.LUCIA, Paseo de Belén 19, Universidad de Valladolid, 47011 Valladolid, Spain
*
Address all correspondence to Jorge Souto at souto@eii.uva.es
Get access

Abstract

A computational model for the evaluation of the thermomechanical effects that give rise to the catastrophic optical damage of laser diodes has been devised. The model traces the progressive deterioration of the device running in continuous wave conditions. The local heating of the active layer locally leads to the onset of the plastic regime. As a result, dislocations and threads of dislocations grow across the active layers and lead to rapidly growing temperatures in the quantum well. The poor power dissipation under these conditions has been identified as the key factor driving the final degradation of the laser.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ueda, O.: On degradation studies of III-V compound semiconductor optical devices over three decades: focusing on gradual degradation. Jpn. J. Appl. Phys. 49, 090001 (2010).Google Scholar
2.Bettiati, M.A.: High optical strength GaAs-based laser structures. Microelectron. Reliab. 53, 1496 (2013).Google Scholar
3.Tang, W.C., Rosen, H.J., Vettiger, P., and Webb, D.J.: Raman microprobe study of the time development of AlGaAs single quantum well laser facet temperature on route to catastrophic breakdown. Appl. Phys. Lett. 58, 557 (1991).Google Scholar
4.Tomm, J.W., Ziegler, M., Oudart, M., Nagle, J., and Jiménez, J.: Gradual degradation of GaAs-based quantum well lasers, creation of defects, and generation of compressive strain. Phys. Status Solidi Appl. Mater. Sci. 206, 1912 (2009).Google Scholar
5.Souto, J., Pura, J.L., and Jiménez, J.: About the physical meaning of the critical temperature for catastrophic optical damage in high power quantum well laser diodes. Laser Phys. Lett. 13, 025005 (2016).Google Scholar
6.Nakwaski, W.: Thermal analysis of the catastrophic mirror damage in laser diodes. J. Appl. Phys. 57, 2424 (1985).Google Scholar
7.Chen, G. and Tien, C.L.: Facet heating of quantum well lasers. J. Appl. Phys. 74, 2167 (1993).Google Scholar
8.Menzel, U.: Self-consistent calculation of facet heating in asymmetrically coated edge emitting diode lasers. Semicond. Sci. Technol. 13, 265 (1998).Google Scholar
9.Smith, W.R.: Mathematical modelling of thermal runaway in semiconductor laser operation. J. Appl. Phys. 87, 8276 (2003).Google Scholar
10.Souto, J., Pura, J.L., and Jiménez, J.: Nanoscale effects on the thermal and mechanical properties of AlGaAs/GaAs quantum well laser diodes: influence on the catastrophic optical damage (COD). J. Phys. D Appl. Phys. 50, 235101 (2017).Google Scholar
11.Chen, G. and Tien, C.L.: Thermal conductivities of quantum well structures. J. Thermophys. Heat Transf. 7, 311 (1993).Google Scholar
12.Liang, L.H. and Li, B.: Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B Condens. Matter Mater. Phys. 73, 1 (2006).Google Scholar
13.Gȩsikowska, E. and Nakwaski, W.: An impact of multi-layered structures of modern optoelectronic devices on their thermal properties. Opt. Quantum Electron. 40, 205 (2008).Google Scholar
14.Capinski, W., Maris, H., Ruf, T., Cardona, M., Ploog, K., and Katzer, D.: Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105 (1999).Google Scholar
15.Tan, H., Kamath, K.K., Mi, Z., Bhattacharya, P., and Klotzkin, D.: Analysis of the reduced thermal conductivity in InGaAs/GaAs quantum dot lasers from chirp characteristics. Appl. Phys. Lett. 89, 1 (2006).Google Scholar
16.Luckyanova, M.N., Johnson, J.A., Maznev, A.A., Garg, J., Jandl, A., Bulsara, M.T., Fitzgerald, E.A., Nelson, K.A., and Chen, G.: Anisotropy of the thermal conductivity in GaAs/AlAs superlattices anisotropy of the thermal conductivity in GaAs/AlAs superlattices. Nano Lett. 13, 3973 (2013).Google Scholar
17.Piprek, J., Kolodzey, J., and Ih, C.S.: Thermal conductivity reduction in GaAs–AlAs distributed Bragg reflectors. IEEE Photonics Technol. Lett. 10, 81 (1998).Google Scholar
18.Martín-Martín, A., Avella, M., Iñiguez, M.P., Jiménez, J., Oudart, M., and Nagle, J.: Thermomechanical model for the plastic deformation in high power laser diodes during operation. J. Appl. Phys. 106, 073105 (2009).Google Scholar
19.Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).Google Scholar
20.Sin, Y., Presser, N., Brodie, M., Lingley, Z., Foran, B., and Moss, S.C.: Degradation mechanisms in high-power multi-mode InGaAs-AlGaAs strained quantum well lasers for high-reliability applications. Proc. SPIE 9348, 93480L–1 (2015).Google Scholar
21.Eliseev, P.G., Glebov, A.G., and Osiński, M.: Current self-distribution effect in diode lasers: analytic criterion and numerical study. IEEE J. Sel. Top. Quantum Electron. 3, 499 (1997).Google Scholar
22.Adachi, S.: Optical properties of GaAs partially amorphized by ion implantation: effective- medium-approximation analysis. J. Appl. Phys. 69, 7768 (1991).Google Scholar
23.Hopkins, P.E. and Duda, J.C.: Introduction to nanoscale thermal conduction. Heat Transf. Math. Model. Numer. Methods Inf. Technol. 112, 872 (2006).Google Scholar
24.Sugiura, L.: Comparison of degradation caused by dislocation motion in compound semiconductor light-emitting devices. Appl. Phys. Lett. 70, 1317 (1997).Google Scholar
25.Chen, G., Neagu, M., and Borca-Tasciuc, T.: Thermal conductivity and heat transfer in superlattices. MRS Proc. 478, 12 (1997).Google Scholar
26.Mion, C., Muth, J.F., Preble, E.A., and Hanser, D.: Accurate dependence of gallium nitride thermal conductivity on dislocation density. Appl. Phys. Lett. 89, 092123 (2006).Google Scholar
27.Sin, Y., Presser, N., Lingley, Z., Brodie, M., Foran, B., and Moss, S.C.: Reliability, failure modes, and degradation mechanisms in high power single- and multi-mode InGaAs-AlGaAs strained quantum well lasers. Proc. SPIE 9733, 973304–1 (2016).Google Scholar
28.Monemar, B., Shih, K.K., and Pettit, G.D.: Some optical properties of the AlxGa1-xAs alloys system. J. Appl. Phys. 47, 2604 (1976).Google Scholar
29.Tomm, J.W., Ziegler, M., Hempel, M., and Elsaesser, T.: Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAs-based diode lasers. Laser Photon. Rev. 5, 422 (2011).Google Scholar
30.Schatz, R. and Bethea, C.G.: Steady state model for facet heating leading to thermal runaway in semiconductor lasers. J. Appl. Phys. 76, 2509 (1994).Google Scholar