Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T19:08:46.707Z Has data issue: false hasContentIssue false

A review on phospholipid vesicles flowing through channels

Published online by Cambridge University Press:  30 July 2018

Fikret Aydin
Affiliation:
Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
Xiaolei Chu
Affiliation:
Department of Chemical Engineering, University of California-Davis, Davis, CA 95616, USA
Joseph Greenstein
Affiliation:
Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
Meenakshi Dutt*
Affiliation:
Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
*
Address all correspondence to Meenakshi Dutt at meenakshi.dutt@rutgers.edu
Get access

Abstract

The flow of particles through confined volumes has appeared under different contexts in nature and technology. Some examples include the flow of red blood cells or drug delivery vehicles through capillaries, or surfactant-based particles in nano- or microfluidic cells. The molecular composition of the particles along with external conditions and the characteristics of the confined volume impact the response of the particle to flow. This review focuses on the problem of phospholipid vesicles constrained to flowing in channels. The review examines how experimental and computational approaches have been harnessed to study the response of these particles to the flow.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Equally contributing co-authors.

References

1.Qi, Q.M. and Shaqfeh, E.S.G.: Theory to predict particle migration and margination in the pressure-driven channel flow of blood. Phys. Rev. Fluids 2, 093102 (2017).Google Scholar
2.Moretti, A., Zhang, B., Lee, B., Dutt, M., and Uhrich, K.E.: Degree of unsaturation and backbone orientation of amphiphilic macromolecules influence local lipid properties in large unilamellar vesicles. Langmuir 33, 14663 (2017).Google Scholar
3.Chu, X., Yu, X., Greenstein, J., Aydin, F., Uppaladadium, G., and Dutt, M.: Flow-induced shape reconfiguration, phase separation, and rupture of bio-inspired vesicles. ACS Nano 11, 6661 (2017).Google Scholar
4.Aydin, F., Uppaladadium, G., and Dutt, M.: The design of shape-tunable hairy vesicles. Colloids Surf. B 128, 268 (2015).Google Scholar
5.Leonenko, Z.V., Finot, E., Ma, H., Dahms, T.E.S., and Cramb, D.T.: Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Biophys. J. 86, 3783 (2004).Google Scholar
6.Kucerka, N., Nieh, M.P., and Katsaras, J.: Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature. Biochim. Biophys. Acta Biomembr. 1808, 2761 (2011).Google Scholar
7.Vitkova, V., Mader, M., and Podgorski, T.: Deformation of vesicles flowing through capillaries. Europhys. Lett. 68, 398 (2004).Google Scholar
8.Pommella, A., Brooks, N.J., Seddon, J.M., and Garbin, V.: Selective flow-induced vesicle rupture to sort by membrane mechanical properties. Sci. Rep. 5, 13163 (2015).Google Scholar
9.McWhirter, J.L., Noguchi, H., and Gompper, G.: Deformation and clustering of red blood cells in microcapillary flows. Soft Matter 7, 10967 (2011).Google Scholar
10.Fahraeus, R. and Lindqvist, T.: The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562 (1931).Google Scholar
11.McWhirter, J.L., Noguchi, H., and Gompper, G.: Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl. Acad. Sci. USA 106, 6039 (2009).Google Scholar
12.Foo, J.J., Liu, K.K., and Chan, V.: Thermal effect on a viscously deformed liposome in a laser trap. Ann. Biomed. Eng. 31, 354 (2003).Google Scholar
13.Foo, J.J., Chan, V., and Liu, K.K.: Shape recovery of an optically trapped vesicle: effect of flow velocity and temperature. IEEE Trans. Nanobiosci. 3, 96 (2004).Google Scholar
14.Bertrand, M. and Joos, B.: Extrusion of small vesicles through nanochannels: a model for experiments and molecular dynamics simulations. Phys. Rev. E 85, 051910 (2012).Google Scholar
15.Noguchi, H. and Gompper, G.: Fluid vesicles with viscous membranes in shear flow. Phys. Rev. Lett. 93, 258102 (2004).Google Scholar
16.Noguchi, H. and Gompper, G.: Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations. Phys. Rev. E 72, 011901 (2005).Google Scholar
17.Smith, K.A. and Uspal, W.E.: Shear-driven release of a bud from a multicomponent vesicle. J. Chem. Phys. 126, 075102 (2007).Google Scholar
18.Kaoui, B., Tahiri, N., Biben, T., Ez-Zahraouy, H., Benyoussef, A., Biros, G., and Misbah, C.: Complexity of vesicle microcirculation. Phys. Rev. E 84, 041906 (2011).Google Scholar
19.Marmottant, P., Biben, T., and Hilgenfeldt, S.: Deformation and rupture of lipid vesicles in the strong shear flow generated by ultrasound-driven microbubbles. Proc. R. Soc. A 464, 1781 (2008).Google Scholar
20.Misbah, C.: Vesicles, capsules and red blood cells under flow. J. Phys. Conf. Ser. 392, 012005 (2012).Google Scholar
21.Lalia, B.S., Kochkodan, V., Hashaikeh, R., and Hilal, N.: A review on membrane fabrication: structure, properties and performance relationship. Desalination 326, 77 (2013).Google Scholar
22.Needham, D. and Nunn, R.S.: Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys. J. 58, 997 (1990).Google Scholar
23.Aydin, F., Ludford, P., and Dutt, M.: Phase segregation in bio-inspired multi-component vesicles encompassing double tail phospholipid species. Soft Matter 10, 6096 (2014).Google Scholar
24.Chu, X.L., Aydin, F., and Dutt, M.: Modeling interactions between multicomponent vesicles and antimicrobial peptide-inspired nanoparticles. ACS Nano 10, 7351 (2016).Google Scholar
25.Silvius, J.R.: Thermotropic phase transitions of pure lipids in model membranes and their modifications by membrane proteins. Lipid-Protein Interact. 2, 239281 (1982).Google Scholar
26.Artmann, G.M., Kelemen, C., Porst, D., Buldt, G., and Chien, S.: Temperature transitions of protein properties in human red blood cells. Biophys. J. 75, 3179 (1998).Google Scholar
27.Mishima, K., Nakamae, S., Ohshima, H., and Kondo, T.: Curvature elasticity of multilamellar lipid bilayers close to the chain-melting transition. Chem. Phys. Lipids 110, 27 (2001).Google Scholar
28.Renoncourt, A., Vlachy, N., Bauduin, P., Drechsler, M., Touraud, D., Verbavatz, J.M., Dubois, M., Kunz, W., and Ninham, B.W.: Specific alkali cation effects in the transition from micelles to vesicles through salt addition. Langmuir 23, 2376 (2007).Google Scholar
29.Laio, A. and Parrinello, M.: Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99, 12562 (2002).Google Scholar
30.Noguchi, H. and Gompper, G.: Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl. Acad. Sci. USA 102, 14159 (2005).Google Scholar
31.Groot, R.D. and Warren, P.B.: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423 (1997).Google Scholar
32.Dutt, M., Kuksenok, O., Nayhouse, M.J., Little, S.R., and Balazs, A.C.: Modeling the self-assembly of lipids and nanotubes in solution: forming vesicles and bicelles with transmembrane nanotube channels. ACS Nano 5, 4769 (2011).Google Scholar
33.Ye, T., Phan-Thien, N., and Lim, C.T.: Particle-based simulations of red blood cells – a review. J. Biomech. 49, 2255 (2016).Google Scholar
34.Needham, D. and Rashmi, S.N.: Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys. J. 58, 9971009 (1990).Google Scholar
35.Revenga, M., Zúñiga, I., and Español, P.: Boundary conditions in dissipative particle dynamics. Comput. Phys. Commun. 121–122, 309 (1999).Google Scholar
36.Li, Z., Bian, X., Tang, Y.H., and Karniadakis, G.E.: A dissipative particle dynamics method for arbitrarily complex geometries. J. Comput. Phys. 355, 534 (2018).Google Scholar
37.Li, X.J., Vlahovska, P.M., and Karniadakis, G.E.: Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9, 28 (2013).Google Scholar
38.Abreu, D., Levant, M., Steinberg, V., and Seifert, U.: Fluid vesicles in flow. Adv. Colloid Interface Sci. 208, 129 (2014).Google Scholar
39.Kaoui, B., Ristow, G.H., Cantat, I., Misbah, C., and Zimmermann, W.: Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 77, 021903 (2008).Google Scholar
40.Hu, W.F., Kim, Y., and Lai, M.C.: An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in Navier-Stokes flows. J. Comput. Phys. 257, 670 (2014).Google Scholar
41.Fedosov, D.A., Peltomaki, M., and Gompper, G.: Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10, 4258 (2014).Google Scholar
42.Biben, T. and Misbah, C.: Tumbling of vesicles under shear flow within an advected-field approach. Phys. Rev. E 67, 031908 (2003).Google Scholar
43.Beaucourt, J., Rioual, F., Seon, T., Biben, T., and Misbah, C.: Steady to unsteady dynamics of a vesicle in a flow. Phys. Rev. E 69, 011906 (2004).Google Scholar
44.Kaoui, B. and Harting, J.: Two-dimensional lattice Boltzmann simulations of vesicles with viscosity contrast. Rheol. Acta 55, 465475 (2016).Google Scholar
45.Li, H.B., Yi, H.H., Shan, X.W., and Fang, H.P.: Shape changes and motion of a vesicle in a fluid using a lattice Boltzmann model. EPL 81, 54002 (2008).Google Scholar
46.Abreu, D.: Vesicles in flow: role of thermal fluctuations. PhD thesis, University of Stuttgart, 2014.Google Scholar
47.Fedosov, D.A., Dao, M., Karniadakis, G.E., and Suresh, S.: Computational biorheology of human blood flow in health and disease. Ann. Biomed. Eng. 42, 368 (2014).Google Scholar
48.Goni, F.M.: The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochim. Biophys. Acta 1838, 1467 (2014).Google Scholar
49.Zhu, Y.Q., Yang, B., Chen, S., and Du, J.Z.: Polymer vesicles: mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci. 64, 1 (2017).Google Scholar
50.Vauthey, S., Santoso, S., Gong, H., Watson, N., and Zhang, S.: Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA 99, 5355 (2002).Google Scholar
51.Ahlrichs, P. and Dunweg, B.: Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J. Chem. Phys. 111, 8225 (1999).Google Scholar
52.Lobaskin, V. and Dunweg, B.: A new model for simulating colloidal dynamics. New J. Phys. 6, 54 (2004).Google Scholar
53.Ollila, S.T., Denniston, C., Karttunen, M., and Ala-Nissila, T.: Fluctuating lattice-Boltzmann model for complex fluids. J. Chem. Phys. 134, 064902 (2011).Google Scholar
54.Adhikari, R., Stratford, K., Cates, M.E., and Wagner, A.J.: Fluctuating lattice Boltzmann. EPL 71, 473 (2005).Google Scholar
55.Mackay, F.E., Ollila, S.T.T., and Denniston, C.: Hydrodynamic forces implemented into LAMMPS through a lattice-Boltzmann fluid. Comput. Phys. Commun. 184, 2021 (2013).Google Scholar
56.Mackay, F.E. and Denniston, C.: Coupling MD particles to a lattice-Boltzmann fluid through the use of conservative forces. J. Comput. Phys. 237, 289 (2013).Google Scholar
57.Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285 (2006).Google Scholar
58.Pham, T.T., Schiller, U.D., Prakash, J.R., and Dunweg, B.: Implicit and explicit solvent models for the simulation of a single polymer chain in solution: lattice Boltzmann versus Brownian dynamics. J. Chem. Phys. 131, 164114 (2009).Google Scholar
59.Chatterji, A. and Horbach, J.: Electrophoretic properties of highly charged colloids: a hybrid molecular dynamics/lattice Boltzmann simulation study. J. Chem. Phys. 126, 064907 (2007).Google Scholar
60.Ando, T. and Skolnick, J.: On the importance of hydrodynamic interactions in lipid membrane formation. Biophys. J. 104, 96 (2013).Google Scholar