Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T06:56:44.651Z Has data issue: false hasContentIssue false

Lattice effect in Mie-resonant dielectric nanoparticle array under oblique light incidence

Published online by Cambridge University Press:  16 November 2018

Viktoriia E. Babicheva*
Affiliation:
College of Optical Sciences, University of Arizona, 1630 E. University Blvd., P.O. Box 210094, Tucson, AZ 85721, USA
*
Address all correspondence to Viktoriia E. Babicheva at vb2@email.arizona.edu
Get access

Abstract

Ultra-thin optical structures, known as metasurfaces, have shown promising light controlling capability at the nanoscale. In this paper, we study their particular case, a periodic array of high-refractive-index nanoparticles with electric and magnetic resonances. The main result of the work is a numerical demonstration that the lattice effect in the periodic arrangement of nanoparticles changes the resonance position even if the resonances are above the diffraction wavelength (Rayleigh anomaly). We show that the disk resonance changes can be achieved not only by varying periods of the array under normal light incidence but also by changing the incident angle.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Luk'yanchuk, B., Zheludev, N.I., Maier, S.A., Halas, N.J., Nordlander, P., Giessen, H., and Chong, C.T.: The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707 (2010).10.1038/nmat2810Google Scholar
2.Kerker, M., Wang, D.S., and Giles, C.L.: Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765 (1983).10.1364/JOSA.73.000765Google Scholar
3.Liu, W., Zhang, J., Lei, B., Ma, H., Xie, W., and Hu, H.: Ultra-directional forward scattering by individual core-shell nanoparticles. Opt. Express 22, 16178 (2014).10.1364/OE.22.016178Google Scholar
4.Miroshnichenko, A.E., Evlyukhin, A.B., Yu, Y.F., Bakker, R.M., Chipouline, A., Kuznetsov, A.I., Luk'yanchuk, B., Chichkov, B.N., and Kivshar, Y.S.: Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8096 (2015).10.1038/ncomms9069Google Scholar
5.Evlyukhin, A.B., Novikov, S.M., Zywietz, U., Eriksen, R.L., Reinhardt, C., Bozhevolnyi, S.I., and Chichkov, B.N.: Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749 (2012).10.1021/nl301594sGoogle Scholar
6.Chen, C., Wang, F., Sheng, Y., and Wang, J.: Enhancement transmittance of a metamaterial filter based on local surface plasma resonance. MRS. Commun. 8, 194 (2018).10.1557/mrc.2018.25Google Scholar
7.Streyer, W., Feng, K., Zhong, Y., Hoffman, A.J., and Wasserman, D.: Engineering the Reststrahlen band with hybrid plasmon/phonon excitations. MRS. Commun. 6, 1 (2016).10.1557/mrc.2015.81Google Scholar
8.Babicheva, V.E.: Directional scattering by the hyperbolic-medium antennas and silicon particles. MRS Advances 3, 1913 (2018).10.1557/adv.2018.112Google Scholar
9.Zhukovsky, S.V., Babicheva, V.E., Uskov, A.V., Protsenko, I.E., and Lavrinenko, A.V.: Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells. Plasmonics. 9, 283 (2014).10.1007/s11468-013-9621-zGoogle Scholar
10.Baryshnikova, K.V., Petrov, M.I., Babicheva, V.E., and Belov, P.A.: Plasmonic and silicon spherical nanoparticle antireflective coatings. Sci. Rep. 6, 22136 (2016).10.1038/srep22136Google Scholar
11.Zhou, W., Dridi, M., Suh, J.Y., Kim, C.H., Co, D.T., Wasielewski, M.R., Schatz, G.C., and Odom, T.W.: Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 8, 506 (2013).10.1038/nnano.2013.99Google Scholar
12.Babicheva, V.E., Gamage, S., Stockman, M.I., and Abate, Y.: Near-field edge fringes at sharp material boundaries. Opt. Express 25, 23935 (2017).10.1364/OE.25.023935Google Scholar
13.Offermans, P., Schaafsma, M.C., Rodriguez, S.R.K., Zhang, Y., Crego-Calama, M., Brongersma, S.H., and Gómez Rivas, J.: Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5, 5151 (2011).10.1021/nn201227bGoogle Scholar
14.Staude, I., Miroshnichenko, A.E., Decker, M., Fofang, N.T., Liu, S., Gonzales, E., Dominguez, J., Luk, T.S., Neshev, D.N., Brener, I., and Kivshar, Y.: Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7, 7824 (2013).10.1021/nn402736fGoogle Scholar
15.Zhao, W., Leng, X., and Jiang, Y.: Fano resonance in all-dielectric binary nanodisk array realizing optical filter with efficient linewidth tuning. Opt. Express 23, 68586866 (2015).10.1364/OE.23.006858Google Scholar
16.An, N., Wang, K., Wei, H., Song, Q., and Xiao, S.: Fabricating high refractive index titanium dioxide film using electron beam evaporation for all-dielectric metasurfaces. MRS. Commun. 6, 77 (2016).10.1557/mrc.2016.13Google Scholar
17.Evlyukhin, A.B., Reinhardt, C., Seidel, A., Luk'yanchuk, B.S., and Chichkov, B.N.: Optical response features of Si-nanoparticle arrays. Phys. Rev. B 82, 045404 (2010).10.1103/PhysRevB.82.045404Google Scholar
18.Babicheva, V.E. and Evlyukhin, A.B.: Interplay and coupling of electric and magnetic multipole resonances in plasmonic nanoparticle lattices. MRS. Commun. 8, 712 (2018).10.1557/mrc.2018.112Google Scholar
19.Babicheva, V.E. and Evlyukhin, A.B.: Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses. Laser Photonics Rev. 11, 1700132 (2017).10.1002/lpor.201700132Google Scholar
20.Yang, Ch.-Y., Yang, J.-H., Yang, Z.-Y., Zhou, Z.-X., Sun, M.-G., Babicheva, V.E., and Chen, K.-P.: Nonradiating silicon nanoantenna metasurfaces as narrowband absorbers. ACS Photonics 5, 2596 (2018).10.1021/acsphotonics.7b01186Google Scholar
21.Evlyukhin, A.B., Eriksen, R.L., Cheng, W., Beermann, J., Reinhardt, C., Petrov, A., Prorok, S., Eich, M., Chichkov, B.N., and Bozhevolnyi, S.I.: Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances. Sci. Rep. 4, 4126 (2014).10.1038/srep04126Google Scholar
22.Arslan, D., Chong, K.E., Miroshnichenko, A.E., Choi, D.Y., Neshev, D.N., Pertsch, T., Kivshar, Y.S., and Staude, I.: Angle-selective all-dielectric Huygens’ metasurfaces. J. Phys. D: Appl. Phys. 50, 434002 (2017).10.1088/1361-6463/aa875cGoogle Scholar
23.van de Groep, J. and Polman, A.: Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express 21, 2628526302 (2013).10.1364/OE.21.026285Google Scholar
24.Decker, M., Staude, I., Falkner, M., Dominguez, J., Neshev, D.N., Brener, I., Pertsch, T., and Kivshar, Y.S.: High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813 (2015).10.1002/adom.201400584Google Scholar
25.Babicheva, V., Petrov, M., Baryshnikova, K., and Belov, P.: Reflection compensation mediated by electric and magnetic resonances of all-dielectric metasurfaces [Invited]. J. Opt. Soc. Am. B 34, D18 (2017).10.1364/JOSAB.34.000D18Google Scholar
26.Zou, S., Janel, N., and Schatz, G.C.: Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871 (2004).10.1063/1.1760740Google Scholar
27.Markel, V.A.: Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres. J. Phys. B: Atom. Mol. Opt. Phys. 38, L115 (2005).10.1088/0953-4075/38/7/L02Google Scholar
28.Kravets, V.G., Schedin, F., and Grigorenko, A.N.: Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101, 087403 (2008).10.1103/PhysRevLett.101.087403Google Scholar
29.Auguié, B. and Barnes, W.L.: Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101, 143902 (2008).10.1103/PhysRevLett.101.143902Google Scholar
30.Wang, W., Ramezani, M., Väkeväinen, A.I., Törmä, P., Gómez Rivas, J., and Odom, T.W.: The rich photonic world of plasmonic nanoparticle arrays. Mater. Today 21, 303 (2018).10.1016/j.mattod.2017.09.002Google Scholar
31.Evlyukhin, A.B., Reinhardt, C., Zywietz, U., and Chichkov, B.: Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions. Phys. Rev. B 85, 245411 (2012).10.1103/PhysRevB.85.245411Google Scholar
32.Babicheva, V.E. and Evlyukhin, A.B.: Metasurfaces with electric quadrupole and magnetic dipole resonant coupling. ACS Photonics 5, 2022 (2018).10.1021/acsphotonics.7b01520Google Scholar
33.Heavens, O.S.: Handbook of optical constants of solids II. J. Mod. Opt. 39, 189189 (1992).10.1080/716099804aGoogle Scholar