Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T20:54:06.887Z Has data issue: false hasContentIssue false

Effect of excessive Pb on the stability and performance of Pb-halide perovskite solar cells against photo-induced degradation

Published online by Cambridge University Press:  28 December 2018

Aditya S. Yerramilli
Affiliation:
School for Engineering of Matter, Transport and Energy, Arizona State University, AZ, USA
Yuanqing Chen
Affiliation:
School for Engineering of Matter, Transport and Energy, Arizona State University, AZ, USA Department of Materials Physics & Chemistry, Xi'an University of Technology, Xi'an, China
T. L. Alford*
Affiliation:
School for Engineering of Matter, Transport and Energy, Arizona State University, AZ, USA Materials Science Graduate Program, African University of Science and Technology, Abuja, Nigeria
*
Address all correspondence to T. L. Alford at TA@asu.edu
Get access

Abstract

Perovskite solar cells have evolved significantly since their inception. However, stability is still a major concern. We fabricated devices using a glass/ITO/PEDOT:PSS/MAPbI3/PCBM/Ag device configuration. Devices fabricated using the Pb-acetate precursors showed an efficiency of 13%. This work reports the effect of adding excess lead to the precursor and its impact on the light-induced degradation of efficiency. It is found that 5% excess lead is best for devices regarding the performance and stability and devices retained greater than 50% of the initial efficiency after 2 h of prolonged irradiation. We attribute this phenomenon to the formation of PbI2 which induces passivation in the grain-boundaries.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.Q., Dante, M., and Heeger, A.J.: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222225 (2007).Google Scholar
2.Brabec, C.J., Sariciftci, N.S., and Hummelen, J.C.: Plastic solar cells. Adv. Funct. Mater. 11, 1526 (2001).Google Scholar
3.Chen, H.-Y.Y., Hou, J.H., Zhang, S.Q., Liang, Y.Y., Yang, G.W., Yang, Y., Yu, L.P., Wu, Y., and Li, G.: Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics. 3, 649653 (2009).Google Scholar
4.Ball, J.M., Lee, M.M., Hey, A., and Snaith, H.J.: Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739 (2013).Google Scholar
5.Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 60506051 (2009).Google Scholar
6.Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643647 (2012).Google Scholar
7.Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z., You, J., Liu, Y., and Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542546 (2014).Google Scholar
8.Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., and Seok, S.I.: Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897903 (2014).Google Scholar
9.Guarnera, S., Abate, A., Zhang, W., Foster, J.M., Richardson, G., Petrozza, A., and Snaith, H.J.: Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 6, 432437 (2015).Google Scholar
10.Bag, M., Renna, L.A., Adhikari, R.Y., Karak, S., Liu, F., Lahti, P.M., Russell, T.P., Tuominen, M.T., and Venkataraman, D.: Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137, 1313013137 (2015).Google Scholar
11.Li, X., Bi, D., Yi, C., Décoppet, J.-D., Luo, J., Zakeeruddin, S.M., Hagfeldt, A., and Grätzel, M.: A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353, 5862 (2016).Google Scholar
12.Roose, B., Baena, J.P.C., Gödel, K.C., Graetzel, M., Hagfeldt, A., Steiner, U., and Abate, A.: Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. Nano Energy 30, 517522 (2016).Google Scholar
13.Leijtens, T., Eperon, G.E., Pathak, S., Abate, A., Lee, M.M., and Snaith, H.J.: Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013).Google Scholar
14.Ito, S., Tanaka, S., Manabe, K., and Nishino, H.: Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 118, 1699517000 (2014).Google Scholar
15.Misra, R.K., Aharon, S., Li, B., Mogilyansky, D., Visoly-Fisher, I., Etgar, L., and Katz, E.A.: Temperature- and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 6, 326330 (2015).Google Scholar
16.Wei, D., Wang, T., Ji, J., Li, M., Cui, P., Li, Y., Li, G., Mbengue, J.M., and Song, D.: Photo-induced degradation of lead halide perovskite solar cells caused by the hole transport layer/metal electrode interface. J. Mater. Chem. A 4, 19911998 (2016).Google Scholar
17.Yuan, H., Debroye, E., Janssen, K., Naiki, H., Steuwe, C., Lu, G., Moris, M., Orgiu, E., Uji-i, H., De Schryver, F., Samorì, P., Hofkens, J., and Roeffaers, M.: Degradation of methylammonium lead iodide perovskite structures through light and electron beam driven ion migration. J. Phys. Chem. Lett. 7, 561566 (2016).Google Scholar
18.Song, D., Ji, J., Li, Y., Li, G., Li, M., Wang, T., Wei, D., Cui, P., He, Y., and Mbengue, J.M.: Degradation of organometallic perovskite solar cells induced by trap states. Appl. Phys. Lett. 108, 153105 (2016).Google Scholar
19.Nie, W., Blancon, J.C., Neukirch, A.J., Appavoo, K., Tsai, H., Chhowalla, M., Alam, M.A., Sfeir, M.Y., Katan, C., Even, J., Tretiak, S., Crochet, J.J., Gupta, G., and Mohite, A.D.: Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).Google Scholar
20.Dualeh, A., Tétreault, N., Moehl, T., Gao, P., Nazeeruddin, M.K., and Grätzel, M.: Effect of annealing temperature on film morphology of organic-inorganic hybrid perovskite solid-state solar cells. Adv. Funct. Mater. 24, 32503258 (2014).Google Scholar
21.Li, X., Dar, M.I., Yi, C.Y., Luo, J.S., Tschumi, M., Zakeeruddin, S.M., Nazeeruddin, M.K., Han, H.W., and Gratzel, M.: Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides. Nat. Chem. 7, 703711 (2015).Google Scholar
22.Yang, Z., Rajagopal, A., Jo, S.B., Chueh, C.C., Williams, S., Huang, C.C., Katahara, J.K., Hillhouse, H.W., and Jen, A.K.Y.: Stabilized wide bandgap perovskite solar cells by tin substitution. Nano Lett. 16, 77397747 (2016).Google Scholar
23.Qiu, W., Merckx, T., Jaysankar, M., Masse de la Huerta, C., Rakocevic, L., Zhang, W., Paetzold, U.W., Gehlhaar, R., Froyen, L., Poortmans, J., Cheyns, D., Snaith, H.J., and Heremans, P.: Pinhole-free perovskite films for efficient solar modules, energy environ. Science 9, 484489 (2016).Google Scholar
24.Chen, Y., Yerramilli, A., Shen, Y., Zhao, Z., and Alford, T.L.: Effect of excessive Pb content in the precursor solutions on the properties of the lead acetate derived CH3NH3PbI3 perovskite solar cells. Sol. Energy Mater. Sol. Cells 174, 478484 (2018).Google Scholar
25.Wang, L., McCleese, C., Kovalsky, A., Zhao, Y., and Burda, C.: Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 110, 140822082052002 (2014).Google Scholar
26.Chen, Q., Zhou, H., Bin Song, T., Luo, S., Hong, Z., Duan, H.S., Dou, L., Liu, Y., and Yang, Y.: Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14, 41584163 (2014).Google Scholar
Supplementary material: File

Yerramilli et al. supplementary material

Figures S1-S3

Download Yerramilli et al. supplementary material(File)
File 515.6 KB