Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-18T10:43:25.291Z Has data issue: false hasContentIssue false

Dislocation dynamics study of precipitate hardening in Al–Mg–Si alloys with input from experimental characterization

Published online by Cambridge University Press:  04 September 2017

Inga Ringdalen*
Affiliation:
SINTEF Materials and Chemistry, NO-7491 Trondheim, Norway
Sigurd Wenner
Affiliation:
SINTEF Materials and Chemistry, NO-7491 Trondheim, Norway Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
Jesper Friis
Affiliation:
SINTEF Materials and Chemistry, NO-7491 Trondheim, Norway
Jaime Marian
Affiliation:
Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
*
Address all correspondence to Inga Ringdalen inga.g.ringdalen@sintef.no
Get access

Abstract

Partial aging of AA6060 aluminum alloys is known to result in a microstructure characterized by needle-shaped Si/Mg-rich precipitates. These precipitates belong to the non-equilibrium β″ phase and are coherent with the face-centered cubic Al lattice, despite of which they can cause considerable hardening. We have investigated the interaction between these β″ precipitates and dislocations using a unique combination of modeling and experimental observations. Dislocation-precipitate interactions are simulated using dislocation dynamics (DD) parameterized with atomistic simulations. The elastic fields due to the precipitates are described by a decay law fitted to high-resolution transmission electron microscopy measurements. These fields are subsequently used in DD to study the strength of individual precipitates as a function of size and dislocation character. Our results can be used to parameterize crystal plasticity models to calculate the strength of AA6060 at the macroscopic level.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Edwards, G.A., Stiller, K., Dunlop, G., and Couper, M.J.: The composition of fine-scale precipitates in Al–Mg–Si alloys. Mater. Sci. Forum 217, 713718 (1996).Google Scholar
2.Matsuda, K., Sakaguchi, Y., Miyata, Y., Uetani, Y., Sato, T., Kamio, A., and Ikeno, S.: Precipitation sequence of various kinds of metastable phases in Al-1.0 mass% Mg2Si-0.4 mass% Si alloy. J. Mater. Sci. 35, 179189 (2000).Google Scholar
3.Andersen, S.J., Marioara, C.D., Frøseth, A., Vissers, R., and Zandbergen, H.W.: Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β′ and β″ phases. Mater. Sci. Eng. A 390, 127138 (2005).Google Scholar
4.Zandbergen, H.W., Andersen, S.J., and Jansen, J.: Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science 277, 12211225 (1997).Google Scholar
5.Marioara, C.D., Nordmark, H., Andersen, S.J., and Holmestad, R.: Post-β″phases and their influence on microstructure and hardness in 6xxx Al–Mg–Si alloys. J. Mater. Sci. 41, 471478 (2006).Google Scholar
6.Hasting, H.S., Frøseth, A.G., Andersen, S.J., Vissers, R., Walmsley, J.C., Marioara, C.D. and Holmestad, R.: Composition of β″ precipitates in Al–Mg–Si alloys by atom probe tomography and first principles calculations. J. Appl. Phys. 106, 123527 (2009).Google Scholar
7.Wenner, S., Jones, L., Marioara, C.D. and Holmestad, R.: Atomic-resolution chemical mapping of ordered precipitates in Al alloys using energy-dispersive X-ray spectroscopy. Micron 96, 103111 (2017).Google Scholar
8.Chakrabarti, D. and Laughlin, D.E.: Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog. Mater. Sci. 49, 389410 (2004).Google Scholar
9.Ashby, M.F.: On the Orowan stress (MIT Press, Cambridge, MA, 1969).Google Scholar
10.Ehlers, F.J.H., Dumoulin, S. and Holmestad, R.: 3D modelling of β″in Al–Mg–Si: towards an atomistic level ab initio based examination of a full precipitate enclosed in a host lattice, Comput. Mater. Sci. 91, 200210 (2014).Google Scholar
11.Ardell, A.J.: Precipitation hardening. Metall. Trans. A 16, 21312165 (1985).Google Scholar
12.Osetsky, Y.N. and Bacon, D.J.: Atomic-level level dislocation dynamics in irradiated metals. Comprehens. Nucl. Mater. 1, 123 (2012).Google Scholar
13.Proville, L. and Bako, B.: Dislocation depinning from ordered nanophases in a model fcc crystal: from cutting mechanism to Orowan looping. Acta Mater. 58, 55655571 (2010).Google Scholar
14.Queyreau, S., Monnet, G., and Devincre, B.: Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 58, 55865595 (2010).Google Scholar
15.Monnet, G., Naamane, S., and Devincre, B.: Orowan strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations. Acta Mater. 59, 451461 (2011).Google Scholar
16.Lehtinen, A., Granberg, F., Laurson, L., Nordlund, K., and Alava, M.J.: Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations. Phys. Rev. E 93, 19, 013309 (2016).Google Scholar
17.Keyhani, A., Roumina, R., and Mohammadi, S.: An efficient computational technique for modeling dislocation–precipitate interactions within dislocation dynamics. Comput. Mater. Sci. 122, 281287 (2016).Google Scholar
18.Han, C.-S., Wagoner, R.H., and Barlat, F.: On precipitate induced hardening in crystal plasticity: theory. Int. J. Plast. 20, 477494 (2004).Google Scholar
19.Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 241. No. 1226, 376396 (1957).Google Scholar
20.Arsenlis, A., Cai, W., Tang, M., Rhee, M., Oppelstrup, T., Hommes, G., Pierce, T.G. and Bulatov, V.V.: Enabling strain hardening simulations with dislocation dynamics. Model. Simul. Mater. Sci. Eng. 15, 553 (2007).Google Scholar
21.Martinez, E., Marian, J., Arsenlis, A., Victoria, M., and Perlado, J.M.: Atomistically informed dislocation dynamics in fcc crystals. J. Mech. Phys. Solids 56, 869895 (2008).Google Scholar
22.Mørtsell, E.A., Marioara, C.D., Andersen, S.J., Røyset, J., Reiso, O., and Holmestad, R.: Effects of germanium, copper, and silver substitutions on hardness and microstructure in lean Al–Mg–Si alloys. Metall. Mater. Trans. A 46, 43694379 (2015).Google Scholar
23.Wenner, S. and Holmestad, R.: Accurately measured precipitate–matrix misfit in an Al–Mg–Si alloy by electron microscopy. Scr. Mater. 118, 58 (2016).Google Scholar
24.Hÿtch, M., Snoeck, E., and Kilaas, R.: Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131146 (1998).Google Scholar
25.Marian, J., Martinez, E., Lee, H.J., Wirth, B.D.: Micro/meso-scale computational study of dislocation-stacking-fault tetrahedron interactions in copper. J. Mater. Res. 24, 36283635 (2009).Google Scholar
26.Ninive, P.H.: Towards a complete description of aluminium from atomistic modeling. A parameter-free study of hardening precipitates in Al alloys. PhD thesis, Faculty of Mathematics and Natural Sciences, University of Oslo (2015).Google Scholar
27.Liu, X.-Y., Ercolessi, F. and Adams, J.B.: Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy. Model. Simul. Mater. Sci. Eng. 12, 665 (2004).Google Scholar
28.Olmsted, D.L., Hector, L.G. Jr., Curtin, W.A., and Clifton, R.J.: Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys. Model. Simul. Mater. Sci. Eng. 13, 371 (2005).Google Scholar
29.Bacon, D., Kocks, U., and Scattergood, R.: The effect of dislocation self-interaction on the Orowan stress. Philos. Mag. 28, 12411263 (1973).Google Scholar
30.Han, X., Ghoniem, N.M., Wang, Z.: Parametric dislocation dynamics of anisotropic crystals. Philos. Mag. 83, 37053721 (2003).Google Scholar
31.Ghoniem, N.A., Tong, S.H., Sun, L.Z.: Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys. Rev. B 61, 913 (2000).Google Scholar
32.Shin, C.S., Fivel, M.C., Verdier, M. and Oh, K.H.: Dislocation–impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis. Philos. Mag. 83, 36913704 (2003).Google Scholar
33.Tersoff, J.: Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B 39, 5566 (1989).Google Scholar
34.O'Connor, D.J., Biersack, J.P.: Comparison of theoretical and empirical interatomic potentials. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 15, 1419 (1986).Google Scholar
35.Cereceda, D., Diehl, M., Roters, F., Raabe, D., Perlado, J.M., Marian, J.: Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. Int. J. Plast. 78, 242265 (2016).Google Scholar
36.Clark, B.G., Robertson, I.M., Dougherty, L.M., Ahn, D.C., Sofronis, P.: High-temperature dislocation-precipitate interactions in Al alloys: an in situ transmission electron microscopy deformation study. J. Mater. Res. 20, 17921801 (2005).Google Scholar
37.Nogiwa, K., Yamamoto, T., Fukumoto, K., Matsui, H., Nagai, Y., Yubuta, K., Hasegawa, M.: In situ TEM observation of dislocation movement through the ultrafine obstacles in an Fe alloy. J. Nucl. Mater. 307, 946950 (2002).Google Scholar
Supplementary material: PDF

Ringdalen et al supplementary material

Ringdalen et al supplementary material 1

Download Ringdalen et al supplementary material(PDF)
PDF 4 MB