Hostname: page-component-5f745c7db-tvc9f Total loading time: 0 Render date: 2025-01-06T20:10:23.975Z Has data issue: true hasContentIssue false

Development of ionic-imprinted polyesters of diallyl dicarboxylic acids (DAPY) for uranyl ion extraction (UO22+)

Published online by Cambridge University Press:  03 January 2019

Alejandro Ramos-Ballesteros*
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, Mexico
Emilio Bucio
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, Mexico
*
Address all correspondence to Alejandro Ramos-Ballesteros at alejandro.ramos@correo.nucleares.unam.mx
Get access

Abstract

Non-conventional uranium extraction sources are not the most used mainly due to high extraction costs associated with low concentrations and chemical forms that require extra purification processes. Therefore, efforts should focus on cheaper processes and develop more effective extraction materials. In this investigation, ionic-imprinted polymers were synthesized for the selective extraction of uranyl ions in aqueous solution, using polyesters of 2,5-bis((allyloxy)carbonyl)terephthalic acid and 4,6-bis((allyloxy)carbonyl)isophthalic acid as base materials and polymerized by gamma radiation. The extraction capacity (Q) of the resins was evaluated by varying parameters such as pH, temperature, extraction time, and ionic strength.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abney, C.W., Mayes, R.T., Saito, T., and Dai, S.: Materials for the recovery of uranium from seawater. Chem. Rev. 117, 13935 (2017).Google Scholar
2.IAEA: Analytical Techniques in Uranium Exploration and Ore Processing (International Atomic Energy Agency, Vienna, Austria, 1992).Google Scholar
3.OECD- IAEA: Uranium 2016: Resources, Production and Demand. A Joint Report by the Nuclear Energy Agency and the International Atomic Energy Agency. NEA No. 7301 (París, Francia, 2016).Google Scholar
4.Linfeng, R.: Recent International R&D Activities in the Extraction of Uranium from Seawater (Lawrence Berkeley National Laboratory, 2011). http://escholarship.org/uc/item/12h981cfGoogle Scholar
5.Romero Guzmán, E.T., Solache Ríos, M., Iturbe García, J.L., and Ordoñez Regil, E.: Uranium in phosphate rock and derivatives. J. Radioanal. Nucl. Chem. 189, 301 (1995).Google Scholar
6.Dolatyari, L., Yaftian, M.R., and Rostamnia, S.: Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J. Environ. Manage. 169, 8 (2016).Google Scholar
7.Liu, Y., Cao, X., Hua, R., Wang, Y., Liu, Y., Pang, C., and Wang, Y.: Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. Hydrometallurgy 104, 150 (2010).Google Scholar
8.Bucio, E., Cedillo, G., Burillo, G., and Ogawa, T.: Radiation-induced grafting of functional acrylic monomers onto polyethylene and polypropylene films using acryloyl chloride. Polym. Bull. 46, 115 (2001).Google Scholar
9.Rimdusit, S., Somsaeng, K., Kewsuwan, P., Jubsilp, C., and Tiptipakorn, S.: Comparison of gamma radiation crosslinking and chemical crosslinking on properties of methyl cellulose hydrogel. Eng. J. 16, 15 (2012).Google Scholar
10.Wei, M., Liao, J., Liu, N., Zhang, D., Kang, H., Yang, Y., and Jin, J.: Interaction between uranium and humic acid (I): Adsorption behaviors of U(VI) in soil humic acids. Nucl. Sci. Technol. 18, 287 (2007).Google Scholar
11.Rashid, M.A. and King, L.H.: Major oxygen-containing functional groups present in humic and fulvic acid fractions isolated from contrasting marine environments. Geochim. Cosmochim. Acta 34, 193 (1970).Google Scholar
12.Shanbhag, P.M. and Choppin, G.R.: Binding of uranyl by humic acid. J. Inorg. Nucl. Chem. 43, 3369 (1981).Google Scholar
13.Zhu, B. and Ryan, D.K.: Characterizing the interaction between uranyl ion and fulvic acid using regional integration analysis (RIA) and fluorescence quenching. J. Environ. Radioact. 153, 97 (2016).Google Scholar
14.Barkleit, A., Tsushima, S., Savchuk, O., Philipp, J., Heim, K., Acker, M., Taut, S., and Fahmy, K.: Eu3+-mediated polymerization of benzenetetracarboxylic acid studied by spectroscopy, temperature-dependent calorimetry, and density functional theory. Inorg. Chem. 50, 5451 (2011).Google Scholar
15.Cousson, A., Stout, B., Nectoux, P., Pages, M., and Gasperin, M.: Crystal structure of uranyl benzene 1,2,4,5-tetracarboxylate dihydrate: UO2C10O8H4·2H2O. J. Less-Common Met. 125, 111 (1986).Google Scholar
16.Paine, J.B. III: Esters of pyromellitic acid. Part I. Esters of achiral alcohols: regioselective synthesis of partial and mixed pyromellitate esters, mechanism of transesterification in the quantitative esterification of the pyromellitate system using orthoformate esters, and a facile synthesis of the ortho pyromellitate diester substitution pattern. J. Org. Chem. 73, 4929 (2008).Google Scholar
17.Quintero, S.M.M., Ponce, R.V., Cremona, F.M., Triques, A.L.C., d'Almeida, A.R., and Braga, A.M.B.: Swelling and morphological properties of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) hydrogels in solution with high salt concentration. Polymer 51, 953 (2010).Google Scholar
18.Lopez, D., Plata, P., Burillo, G., and Medina, C.: Synthesis and radiation polymerization of 1-benzoate-2,3-diallylcarbonate glycerol. Radiat. Phys. Chem. 50, 171 (1997).Google Scholar
19.Cormack, P.A.G. and Elorza, A.Z.: Molecularly imprinted polymers: synthesis and characterisation. J. Chromatogr. B 804, 173 (2004).Google Scholar
20.Yoe, H., Fitz, W., and Black, R.: Colorimetric determination of uranium with dibenzoylmethane. Anal. Chem. 25, 1200 (1953).Google Scholar
21.Paine, J.B. III: Esters of pyromellitic acid. Part II. Esters of chiral alcohols: para pyromellitate diesters as a novel class of resolving agents and use of pyromellitates as duplicands for chiral purification. J. Org. Chem. 73, 4939 (2008).Google Scholar
22.Furniss, B., Hannaford, A., Smith, P., and Tatchell, A.: Vogel's Textbook of Practical Organic Chemistry (Longman Scientific & Technical, London, 1989).Google Scholar
23.Kreuz, J.A., Angelo, R.J., and Barth, W.E.: Hydrolysis of some aromatic cyclic anhydrides. J. Polym. Sci. Part A: Polym. Chem. 5, 2961 (1967).Google Scholar
24.Ohtsuka, K., Matsumoto, A., and Kimura, H.: Preparation and cured properties of diallyl phthalate resin modified with epoxy resin and allyl ester compound having carboxylic acid. J. Appl. Polym. Sci. 116, 913 (2010).Google Scholar
25.Pakade, V.E.: Development and Application of Imprinted Polymers for Selective Adsorption of Metal Ions and Flavonols in Complex Samples (University of the Witwatersrand, Johannesburg, 2012).Google Scholar
Supplementary material: File

Ramos-Ballesteros and Bucio supplementary material

Figures S1 and S2

Download Ramos-Ballesteros and Bucio supplementary material(File)
File 322.8 KB