Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-30T04:00:47.594Z Has data issue: false hasContentIssue false

Developing fire-retardant and water-repellent bio-structural panels using nanocellulose

Published online by Cambridge University Press:  22 March 2018

Nadir Yildirim*
Affiliation:
Bursa Technical University, 16310 Bursa, Turkey
*
Address all correspondence to Nadir Yildirim at nadir.yildirim@btu.edu.tr
Get access

Abstract

The fire-retardant and water-repellent bio-structural panels (BISPs) were successfully developed using cellulose nanofibrils, corn starch, boric acid, and n-dodecenyl succinic anhydride with adhesive-free character. Its performance properties were evaluated and compared with other well-known products on the market. The BISP's density (0.1 g/cm3) and permeance value [41.81 g/day/m2 with 5.76% coefficient of variation (CV)] were found higher than compared competitor products. The BISPs' contact angle was found 132.13° (1.59% CV) for BISP. The BISP was the only fire-retardant product, and the only one developed almost no smoke 2.20%.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Oksman, K., Mathew, A.P., and Sain, M.: Novel biocomposites: processing, properties and potential applications. Plast. Rubber Compos. 38, 396405 (2009).Google Scholar
2.Hubbe, M.A., Rojas, O.J., Lucia, L.A., and Sain, M.: Cellulosic nanocomposites: a review. BioResources 3, 929 (2008).Google Scholar
3.Wegner, T.H. and Jones, P.E.: Advancing cellulose-based nanotechnology. Cellulose 13, 115118 (2006).Google Scholar
4.Oksman, K. and Sain, M.: Cellulose nanocomposites: processing, characterization, and properties. ACS Symp. Ser. 938, 28 (2006).Google Scholar
5.Samir, M.A.S.A., Alloin, F., and Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612626 (2005).Google Scholar
6.Yildirim, N. and Shaler, S.: A study on thermal and nanomechanical performance of cellulose nanomaterials (CNs). Materials 10, 718730 (2017).Google Scholar
7.Dufresne, A.: Nanocellulose: a new ageless bionanomaterial. Mater. Today 16, 220227 (2013).Google Scholar
8.Aitomäki, Y. and Oksman, K.: Reinforcing efficiency of nanocellulose in polymers. React. Funct. Polym. 85, 151156 (2014).Google Scholar
9.Lee, K.Y., Aitomäki, Y., Berglund, L.A., Oksman, K., and Bismarck, A.: On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105, 1527 (2014).Google Scholar
10.Dale, B.E. and Chem, J.: ‘Greening’ the chemical industry: research and development priorities for biobased industrial products. Technol. Biotechnol. 78, 10931103 (2003).Google Scholar
11.Lavoine, N., Desloges, I., Dufresne, A., and Bras, J.: Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 90, 735 (2012).Google Scholar
12.Bayer, I.S., Fragouli, D., Attanasio, A., Sorce, B., Bertoni, G., Brescia, R., Corato, R.D., Pellegrino, T., Kalyva, M., Sabella, S., Pompa, P.P., Cingolani, R., and Athanassiou, A.: Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl. Mater. Interfaces 3, 40244031 (2011).CrossRefGoogle ScholarPubMed
13.Yin, Y., Li, J., Liu, Y., and Li, Z.: Starch crosslinked with poly (vinyl alcohol) by boric acid. Appl. Polym. Sci. 96, 13941397 (2005).Google Scholar
14.Gaan, S. and Sun, G.J.: Effect of phosphorus and nitrogen on flame retardant cellulose: A study of phosphorus compounds. J. Anal. Appl. Pyrolysis 78, 371377 (2007).Google Scholar
15.Rupper, P., Gaan, S., Salimova, V., and Heuberger, M.: Characterization of chars obtained from cellulose treated with phosphoramidate flame retardants. J. Anal. Appl. Pyrolysis 87, 9398 (2010).Google Scholar
16.Salimova, V., Dimitry, N., and Gaan, S.: Effect of chemical environment of organophosphorus compounds on thermal decomposition of cellulose. PMSE Prepr. 98, 250251 (2008).Google Scholar
17.Horrocks, A.R.: Fire retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym. Degrad. Stab. 96, 377392 (2011).CrossRefGoogle Scholar
18.Alongi, J. and Malucelli, G.: Cotton flame retardancy: state of the art and future perspectives. RSC Adv. 5, 2423924263 (2015).Google Scholar
19.Nagieb, Z.A., Nassar, M.A., and El, M.G.: Effect of addition of boric acid and borax on fire-retardant and mechanical properties of urea formaldehyde saw dust composites. Int. J. Carbohydr. Chem. 2011, 16 (2011).Google Scholar
20.Song, Z., Xiao, H., and Zhao, Y.: Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr. Polym. 111, 442448 (2014).Google Scholar
21.Topgaard, D. and Soderman, O.: Diffusion of water absorbed in cellulose fibers studied with H-NMR. Langmuir 17, 26942702 (2001).Google Scholar
22.Hofstetter, K., Hinterstoisser, B., and Salmen, L.: Moisture uptake in native cellulose – the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13, 131145 (2006).CrossRefGoogle Scholar
23.Salminen, A.: Hydrophobic micrfibrous cellulose and method of producing the same. Patent WO 2012089929A1 (2012).Google Scholar
24.Yildirim, N., Shaler, S.M., Gardner, D.J., Rice, R., and Bousfield, D.W.: Cellulose nanofibrils (CNFs) reinforced starch insulating foams. Cellulose 21, 43374347 (2014).Google Scholar
25.Balaxi, M., Nikolakakis, I., and Malamataris, S.: Preparation of porous microcrystalline cellulose pellets by freeze-drying: effect of wetting liquid and initial freezing conditions. J. Pharm. Sci. 99 21042113 (2010).Google Scholar
26.Liu, Z., Li, Y., Cui, F., Ping, L., Song, J., Ravee, Y., Jin, L., Xue, Y., Xu, J., Li, G., Wang, Y., and Zheng, Y.: Production of octenyl succinic anhydride-modified waxy corn starch and its characterization. J. Agric. Food Chem. 56, 1149911506 (2008).Google Scholar
27.Chen, K.C. and Lin, Y.F.: Immobilization of microorgansizms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme Microb. Technol. 16, 7983 (1994).Google Scholar
28.Duin, M.V., Peter, J.A., Kieboom, A.P.G., and Van Bekkum, H.: Studies on borate esters I. Tetrahedron 40, 29012911 (1994).Google Scholar
29.Wicklein, B., Kocjan, A., Salazar-Alvarez, G., Carosio, F., Camino, G., Antonietti, M., and Bergström, L.: Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10, 277283 (2014).Google Scholar
30.Sombatsompop, N. and Chaochanchaikul, K.: Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly (vinyl chloride)/wood saw dust composites. Polym. Int. 53, 12101218 (2004).Google Scholar
31.Yin, F., Tang, C., Li, X., and Wang, X.: Effect of moisture on mechanical properties and thermal stability of meta-aramid fiber used in insulating paper. Polymers 9, 537551 (2017).Google Scholar
32.Aulin, C., Salazar-Alvarez, G., and Lindstrom, T.: High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4, 66226628 (2012).Google Scholar
33.Ray, S.S. and Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 15391641 (2003).Google Scholar
34.Yano, K.Y., Usuki, A., Okada, A., Kurauchi, T., and Kamigaito, O.: Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci. 31, 24932498 (1993).Google Scholar
35.Cervin, N.T., Aulin, C., Larsson, P.T., and Wagberg, L.: Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19, 401410 (2012).Google Scholar
36.Jin, H., Kettunen, M., Laiho, A., Pynnonen, H., Paltakari, J., Marmur, A., Ikkala, O., and Ras, R.H.A.: Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuir 27, 19301934 (2011).Google Scholar
37.Stec, A.A. and Hull, T.R.. Assessment of the fire toxicity of building insulation materials. Energy Build. . 43, 498506 (2011).Google Scholar