Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T13:15:57.362Z Has data issue: false hasContentIssue false

Defect engineering in Boron Nitride for catalysis

Published online by Cambridge University Press:  23 July 2018

Yi Ding
Affiliation:
NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Drive, Orlando, FL 32816, USA
Fernand Torres-Davila
Affiliation:
NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA Physics Department, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA
Ahmad Khater
Affiliation:
NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
David Nash
Affiliation:
Physics Department, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA
Richard Blair
Affiliation:
Florida Space Institute, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA
Laurene Tetard*
Affiliation:
NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA Department of Materials Science and Engineering, University of Central Florida, 12760 Pegasus Drive, Orlando, FL 32816, USA Physics Department, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA
*
Address all correspondence to Laurene Tetard at Laurene.Tetard@ucf.edu
Get access

Abstract

Catalytic processes are critical steps in numerous industrial processes. The discovery of high reactivity of defects in metal-free two-dimensional materials has bolstered their emergence as catalysts. Here we consider the effect of defect-inducing methods in hexagonal boron nitride (h-BN) on their performance for olefin and CO2 hydrogenation. We compare the changes introduced by ball milling and heat treatment in h-BN and show how varying the treatment conditions can impact the properties. We provide some evidence of the reactivity of the powders. Our results highlight how characterization can be exploited to assess the potential catalytic activity of h-BN for heterogeneous catalysis.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Solozhenko, V., Lazarenko, A., Petitet, J.-P., and Kanaev, A.: Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids 62, 1331 (2001).Google Scholar
2.Tian, J., Lin, J., Xu, M., Wan, S., Lin, J., and Wang, Y.: Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation. Chem. Eng. Sci. 186, 142 (2018).Google Scholar
3.Nash, D.J., Restrepo, D.T., Parra, N.S., Giesler, K.E., Penabade, R.A., Aminpour, M., Le, D., Li, Z., Farha, O.K., and Harper, J.K.: Heterogeneous metal-free hydrogenation over defect-laden hexagonal boron nitride. ACS Omega 1, 1343 (2016).Google Scholar
4.Li, L., Liu, Y., Yang, X., Yu, X., Fang, Y., Li, Q., Jin, P., and Tang, C.: Ambient carbon dioxide capture using boron-rich porous boron nitride: a theoretical study. ACS Appl. Mater. Interfaces 9, 15399 (2017).Google Scholar
5.Grant, J.T., Carrero, C.A., Goeltl, F., Venegas, J., Mueller, P., Burt, S.P., Specht, S.E., McDermott, W.P., Chieregato, A., and Hermans, I.: Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 354, 1570 (2016).Google Scholar
6.Venegas, J.M., Grant, J.T., McDermott, W.P., Burt, S.P., Micka, J., Carrero, C.A., and Hermans, I.: Selective oxidation of n-butane and isobutane catalyzed by boron nitride. ChemCatChem. 9, 2118 (2017).Google Scholar
7.Grant, J.T., McDermott, W.P., Venegas, J.M., Burt, S.P., Micka, J., Phivilay, S.P., Carrero, C.A., and Hermans, I.: Boron and boron-containing catalysts for the oxidative dehydrogenation of propane. ChemCatChem. 9, 3623 (2017).Google Scholar
8.Fomichev, V., Rudnev, A., and Nemnonov, S.: X-Ray emission bands of transition metals of the first long period. Soviet Physics Solid State 13, 1031 (1971).Google Scholar
9.Carpenter, L., and Kirby, P.: The electrical resistivity of boron nitride over the temperature range 700 degrees C to 1400 degrees C. J. Phys. D: Appl. Phys. 15, 1143 (1982).Google Scholar
10.Akinwande, D., Petrone, N., and Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).Google Scholar
11.Watanabe, K., Taniguchi, T., Niiyama, T., Miya, K., and Taniguchi, M.: Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics 3, 591 (2009).Google Scholar
12.Zhong, L., Bruno, R.C., Ethan, K., Ruitao, L., Rahul, R., Humberto, T., Marcos, A.P., and Mauricio, T.: Defect engineering of two-dimensional transition metal dichalcogenides. 2D Materials 3, 022002 (2016).Google Scholar
13.Peng, Q., Crean, J., Dearden, A.K., Huang, C., Wen, X., Bordas, S. and De, S.: Defect Engineering of 2D monoatomic-layer materials. Mod. Phys. Lett. B 27, 1330017 (2013).Google Scholar
14.Sajid, A., Reimers, J.R., and Ford, M.J.: Defect states in hexagonal boron nitride: assignments of observed properties and prediction of properties relevant to quantum computation. Phys Rev B. 97, 064101 (2018).Google Scholar
15.McDougall, N.L., Partridge, J.G., Nicholls, R.J., Russo, S.P., and McCulloch, D.G.: Influence of point defects on the near edge structure of hexagonal boron nitride. Phys Rev B. 96, 144106 (2017).Google Scholar
16.Henck, H., Pierucci, D., Aziza, Z.B., Silly, M.G., Gil, B., Sirotti, F., Cassabois, G., and Ouerghi, A.: Stacking fault and defects in single domain multilayered hexagonal boron nitride. Appl. Phys. Lett. 110, 023101 (2017).Google Scholar
17.Berzina, B., Korsaks, V., Trinkler, L., Sarakovskis, A., Grube, J., and Bellucci, S.: Defect-induced blue luminescence of hexagonal boron nitride. Diamond Relat. Mater. 68, 131 (2016).Google Scholar
18.Kroes, J., Fasolino, A., and Katsnelson, M.: Energetics, barriers and vibrational spectra of partially and fully hydrogenated hexagonal boron nitride. Phys. Chem. Chem. Phys. 18, 19359 (2016).Google Scholar
19.Immohr, S., Felderhoff, M., Weidenthaler, C., and Schüth, F.: An orders-of-magnitude increase in the rate of the solid-catalyzed CO oxidation by in situ ball milling. Angew. Chem., Int. Ed. 52, 12688 (2013).Google Scholar
20.Rodriguez, B., Bruckmann, A., Rantanen, T., and Bolm, C.: Solvent-free carbon-carbon bond formations in ball mills. Adv. Synth. Catal. 349, 2213 (2007).Google Scholar
21.Eckert, R., Felderhoff, M., and Schüth, F.: Preferential carbon monoxide oxidation over copper-based catalysts under in situ ball milling. Angew. Chem. 129, 2485 (2017).Google Scholar
22.Molchanov, V., Byanov, R., and Goidin, V.: Use of mechanochemical methods in preparation of supported catalysts. Kinet. Catal. 39, 434 (1998).Google Scholar
23.Zazhigalov, V., Haber, J., Stoch, J., Bogutskaya, L., and Bacherikova, I.: Mechanochemistry as activation method of the VPO catalysts for n-butane partial oxidation. Appl. Catal., A 135, 155 (1996).Google Scholar
24.Ghosh, J., Mazumdar, S., Das, M., Ghatak, S., and Basu, A.: Microstructural characterization of amorphous and nanocrystalline boron nitride prepared by high-energy ball milling. Mater. Res. Bull. 43, 1023 (2008).Google Scholar
25.Huang, J., Jia, X., Yasuda, H., and Mori, H.: Stacking disordering in hexagonal BN induced by shearing under ball milling. Philos. Mag. Lett. 79, 217 (1999).Google Scholar
26.Graf, D., Molitor, F., Ensslin, K., Stampfer, C., Jungen, A., Hierold, C., and Wirtz, L.: Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 7, 238 (2007).Google Scholar
27.Mignuzzi, S., Pollard, A.J., Bonini, N., Brennan, B., Gilmore, I.S., Pimenta, M.A., Richards, D., and Roy, D.: Effect of disorder on Raman scattering of single-layer MoS2. Phys Rev B. 91, 195411 (2015).Google Scholar
28.Kang, N., Paudel, H.P., Leuenberger, M.N., Tetard, L., and Khondaker, S.I.: Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C. 118, 21258 (2014).Google Scholar
29.Li, L.H. and Chen, Y.: Atomically thin boron nitride: unique properties and applications. Adv. Funct. Mater. 26, 2594 (2016).Google Scholar
30.Kobayashi, Y., Fukui, K.-I., Enoki, T., Kusakabe, K., and Kaburagi, Y.: Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys Rev B. 71, 193406 (2005).Google Scholar
31.Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., and Iijima, S.: Direct evidence for atomic defects in graphene layers. Nature 430, 870 (2004).Google Scholar
32.Torii, S., Jimura, K., Hayashi, S., Kikuchi, R., and Takagaki, A.: Utilization of hexagonal boron nitride as a solid acid–base bifunctional catalyst. J. Catal. 355, 176 (2017).Google Scholar
33.Fakrach, B., Rahmani, A., Chadli, H., Sbai, K., Bentaleb, M., Bantignies, J.-L., and Sauvajol, J.-L.: Infrared spectrum of single-walled boron nitride nanotubes. Phys Rev B. 85, 115437 (2012).Google Scholar
34.Aradi, E., Naidoo, S., Billing, D., Wamwangi, D., Motochi, I., and Derry, T.E.: Ion beam modification of the structure and properties of hexagonal boron nitride: an infrared and x-ray diffraction study. Nucl. Instrum. Methods Phys. Res., Sect. B 331, 140 (2014).Google Scholar
35.Nithya, J.S.M. and Pandurangan, A.: Efficient mixed metal oxide routed synthesis of boron nitride nanotubes. RSC Adv. 4, 26697 (2014).Google Scholar
36.Baraton, M.I., Merle, T., Quintard, P., and Lorenzelli, V.: Surface activity of a boron nitride powder: a vibrational study. Langmuir 9, 1486 (1993).Google Scholar
37.Li, J., Xiao, X., Xu, X., Lin, J., Huang, Y., Xue, Y., Jin, P., Zou, J., and Tang, C.: Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. Sci. Rep. 3, 3208 (2013).Google Scholar
38.Tang, C., Bando, Y., Huang, Y., Zhi, C., and Golberg, D.: Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles. Adv. Funct. Mater. 18, 3653 (2008).Google Scholar
39.Li, L.H., Cervenka, J., Watanabe, K., Taniguchi, T., and Chen, Y.: Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8, 1457 (2014).Google Scholar
40.Liao, Y., Tu, K., Han, X., Hu, L., Connell, J.W., Chen, Z., and Lin, Y.: Oxidative etching of hexagonal boron nitride toward nanosheets with defined edges and holes. Sci. Rep. 5, 14510 (2015).Google Scholar
41.Yang, Q., Sha, J., Wang, L., Zou, Y., Niu, J., Cui, C., and Yang, D.: Crystalline boron oxide nanowires on silicon substrate. Physica E 27, 319 (2005).Google Scholar
Supplementary material: File

Ding et al. supplementary material

Ding et al. supplementary material 1

Download Ding et al. supplementary material(File)
File 238.4 KB