Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T12:31:29.464Z Has data issue: false hasContentIssue false

Covalent immobilization of lysozyme in silicone rubber modified by easy chemical grafting

Published online by Cambridge University Press:  16 October 2017

G. G. Flores-Rojas*
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
F. López-Saucedo
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México
E. Bucio*
Affiliation:
Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México CDMX 04510, México
T. Isoshima
Affiliation:
Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
*
Address all correspondence to G. G. Flores-Rojas at ggabofo@hotmail.com and E. Bucio at ebucio@nucleares.unam.mx
Address all correspondence to G. G. Flores-Rojas at ggabofo@hotmail.com and E. Bucio at ebucio@nucleares.unam.mx
Get access

Abstract

Functionalization of silicone rubber films with lysozyme was achieved by grafting copolymerization and its chemical activation allowing the covalent immobilization of the enzyme. The new materials were characterized by means of Fourier-transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, contact angle, atomic force microscopy, and mechanical properties of films. The enzymatic activity of films was studied by a suspension of lyophilized Micrococcus lysodeikticus. The activity test was inquired at different pH and temperatures, exhibiting enzymatic activity 20 °C above the free lysozyme, and at pH = 5 where the free lysozyme did not show activity.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cappannella, E., Benucci, I., Lombardelli, C., Liburdi, K., Bavaro, T. and Esti, M.: Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: Bench-scale fluidized-bed reactor study. Food Chem. 210, 49 (2016).CrossRefGoogle ScholarPubMed
2. Wanga, J., Qin, L., Lin, J., Zhu, J., Zhang, Y., Liu, J. and Van der Bruggen, B.: Enzymatic construction of antibacterial ultrathin membranes for dyes removal. Chemical Eng. J. 323, 56 (2017).CrossRefGoogle Scholar
3. Harding, J.L. and Reynolds, M.M.: Combating medical device fouling. Trends Biotechnol. 32, 140 (2014).CrossRefGoogle ScholarPubMed
4. Arciola, C.R., Campoccia, D., Speziale, P., Montanaro, L. and Costerton, J.W.: Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33, 5967 (2012).CrossRefGoogle ScholarPubMed
5. Mérian, T. and Goddard, J.M.: Advances in nonfouling materials: perspectives for the food industry. J. Agric. Food Chem. 60, 2943 (2012).Google Scholar
6. Kacar, Y. and Arıca, M.Y.: Preparation of reversibly immobilized lysozyme onto Procion Green H-E4BD-attached poly(hydroxyethylmethacrylate) film for hydrolysis of bacterial cells. Food Chem. 75, 325 (2001).CrossRefGoogle Scholar
7. Flores-Rojas, G.G., Pino-Ramos, V.H., López-Saucedo, F., Concheiro, A., Alvarez-Lorenzo, C. and Bucio, E.: Improved covalent immobilization of lysozyme on silicone rubber-films grafted with poly(ethylene glycol dimethacrylate-coglycidylmethacrylate). European. Polymer J. 95, 27 (2017).Google Scholar
8. Guadarrama-Zempoalteca, Y., Díaz-Gómez, L., Meléndez-Ortiz, H.I., Concheiro, A., Alvarez-Lorenzo, C. and Bucio, E.: Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion. Rad. Phys. Chem. 126, 1 (2016).CrossRefGoogle Scholar
9. Neves-Petersen, M.T., Snabe, T., Klitgaard, S., Duroux, M. and Petersen, S.B.: Photonic activation of disulfide bridges achieves oriented protein immobilization on biosensor surfaces. Protein Sci. 15, 343 (2006).Google Scholar
10. Masoom, M. and Townshend, A.: Simultaneous determination of sucrose and glucose in mixtures by flow injection analysis with immobilized enzymes. Anal. Chim. Acta 171, 185 (1985).CrossRefGoogle Scholar
11. Sheldon, R.A.: Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349, 1289 (2007).Google Scholar
12. Prodanović, O., Prokopijević, M., Spasojević, D., Stojanović, Ž., Radotić, K., Knežević-Jugović, Z.D. and Prodanović, R.: Improved covalent immobilization of horseradish peroxidase on Macroporous Glycidyl methacrylate-based copolymers. Appl. Biochem. Biotechnol. 168, 1288 (2012).Google Scholar
13. Jin, J., Han, Y., Zhang, C., Liu, J., Jiang, W., Yin, J. and Liang, H.: Effect of grafted PEG chain conformation on albumin and lysozyme adsorption: a combined study using QCM-D and DPI. Colloids Surf. B Biointerfaces 136, 838 (2015).Google Scholar
14. Xu, P., Zeng, Q., Cao, Y., Ma, P., Dong, W. and Chen, M.: Interfacial modification on polyhydroxyalkanoates/starch blend by grafting in-situ. Carboh. Polym. 174, 716 (2017).Google Scholar
15. Wang, L., Shi, Y., Chen, S., Wang, W., Tian, M., Ning, N. and Zhang, L.: Highly efficient mussel-like inspired modification of aramid fibers by UV-accelerated catechol/polyamine deposition followed chemical grafting for high-performance polymer composites. Chemical Eng. J. 314, 583 (2017).CrossRefGoogle Scholar
16. Ko, J.S., Cho, K., Han, S.W., Sung, H.K., Baek, S.W., Koh, W.-G. and Yoon, J.S.: Hydrophilic surface modification of poly(methyl methacrylate)-basedocular prostheses using poly(ethylene glycol) grafting. Colloids Surf. B Biointerfaces 158, 287 (2017).Google Scholar
17. Saeki, D., Nagao, S., Sawada, I., Ohmukai, Y., Maruyama, T. and Matsuyama, H.: Development of antibacterial polyamide reverse osmosis membrane modified with a covalently immobilized enzyme. J. Membr. Sci. 428, 403 (2013).CrossRefGoogle Scholar
18. Minko, S.: Grafting on solid surfaces: “Grafting-to” and “grafting-from” methods, in Polymer Surfaces and Interfaces, edited by Stamm, M. (Springer, Berlin, 2008), pp. 215, 234.Google Scholar
19. Noein, L., Haddadi-Asl, V. and Salami-Kalajahi, M.: Grafting of pH-sensitive poly (N,Ndimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) onto HNTS via surface-initiated atom transfer radical polymerization for controllable drug release. Inter. J. Polymeric Mater. Polymeric Biomater. 66, 123 (2017).Google Scholar
20. Pino-Ramos, V.H., Alvarez-Lorenzo, C., Concheiro, A. and Bucio, E.: One-step grafting of temperature-and pH-sensitive (N-vinylcaprolactam-co-4-vinylpyridine) onto silicone rubber for drug delivery. Design. Monomers Polymers 20, 33 (2017).CrossRefGoogle ScholarPubMed
21. López-Saucedo, F., Alvarez-Lorenzo, C., Concheiro, A. and Bucio, E.: Radiation-grafting of vinyl monomers separately onto polypropylene monofilament sutures. Rad. Phys. Chem. 132, 1 (2017).CrossRefGoogle Scholar
22. Flores-Rojas, G.G. and Bucio, E.: Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber. Rad. Phys. Chem. 127, 21 (2016).CrossRefGoogle Scholar
23. Meaburn, G.M., Hosszu, J.L. and Cole, C.M.: Radiation Grafting of Methacrylates onto Silicone Rubber: Prototype Burn Wound Dressing. Inter. J. Appl. Rad. Isotope 29, 233 (1978).Google Scholar
24. Tokuyama, H., Naohara, S., Fujioka, M. and Sakohara, S.: Preparation of molecular imprinted thermosensitive gels grafted onto polypropylene by plasma-initiated graft polymerization. React. Funct. Polymers 68, 182 (2008).CrossRefGoogle Scholar
25. Khelifa, F., Ershov, S., Habibi, Y., Snyders, R. and Dubois, P.: Free-radical-induced grafting from plasma polymer surfaces. Chem. Rev. 116, 3975 (2016).Google Scholar
26. Domenichelli, I., Coiai, S., Pinzino, C., Taddei, S., Martinelli, E. and Cicogna, F.: Polymer surface modification by photografting of functional nitroxides. European Polymer J. 87, 24 (2017).Google Scholar
27. Mallamace, F., Corsaro, C., Mallamace, D., Vasi, S., Vasi, C. and Dugo, G.: The role of water in protein's behavior: The two dynamical crossovers studied by NMR and FTIR techniques. Comp. Struct. Biotechnol. J. 13, 33 (2015).Google Scholar
28. Castillo, E.-J., Koenig, J.L. and Anderson, J.M.: Protein adsorption on hydrogels: II. Reversible and irreversible interactions between lysozyme and soft contact lens surfaces. Biomaterials 6, 338 (1985).Google Scholar
29. Yang, P.W., Mantsch, H.H., Arrondo, J.L.R., Saint-Girons, I., Guillou, Y., Cohen, G.N. and Barzu, O.: Fourier transform infrared investigation of the Escherichia coli methionine aporepressor. Biochemestry 26, 2706 (1987).Google Scholar
30. Careri, G. and Giansanti, A.: Lysozyme film hydration events: an IR and gravimetric study. Biopolymers 18, 1187 (1979).Google Scholar
Supplementary material: File

Flores-Rojas supplementary material

Flores-Rojas supplementary material 1

Download Flores-Rojas supplementary material(File)
File 509 KB