Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-6mft8 Total loading time: 0.339 Render date: 2021-10-22T20:37:11.223Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Screen-printed organic electrochemical transistors for metabolite sensing

Published online by Cambridge University Press:  22 July 2015

Gaëtan Scheiblin
Affiliation:
Université Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Abdelkader Aliane
Affiliation:
Université Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Xenofon Strakosas
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Vincenzo F. Curto
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Romain Coppard
Affiliation:
Université Grenoble Alpes, F-38000 Grenoble, France CEA, LITEN, F-38054 Grenoble, France
Gilles Marchand
Affiliation:
Université Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Roísín M. Owens*
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
Pascal Mailley*
Affiliation:
Université Grenoble Alpes, F-38000 Grenoble, France CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
George G. Malliaras*
Affiliation:
Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France
*
Address all correspondence Roísín M. Owens, Pascal Mailley, George G. Malliaras atowens@emse.fr, malliaras@emse.fr, and pascal.mailley@cea.fr
Address all correspondence Roísín M. Owens, Pascal Mailley, George G. Malliaras atowens@emse.fr, malliaras@emse.fr, and pascal.mailley@cea.fr
Address all correspondence Roísín M. Owens, Pascal Mailley, George G. Malliaras atowens@emse.fr, malliaras@emse.fr, and pascal.mailley@cea.fr
Get access

Abstract

Screen-printed organic electrochemical transistors (OECTs) were tested as glucose and lactate sensors. The intrinsic amplification of the device allowed it to detect metabolites in low molecular range and validation tests were made on real human sweat. The development of an organically modified sol–gel solid electrolyte paves the way for all printed OECT-based biosensors.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Phypers, B.: Lactate physiology in health and disease. Contin. Educ. Anaesth. Crit. Care Pain 6, 128132 (2006).CrossRefGoogle Scholar
2.Maidan, R., and Heller, A.: Elimination of electrooxidizable interferant-produced currents in amperometric biosensors. Anal. Chem. 64, 28892896 (1992).CrossRefGoogle Scholar
3.Kim, J., Valdes-Ramirez, G., Bandodkar, A.J., Jia, W., Martinez, A.G., Ramirez, J., Mercier, P., and Wang, J.: Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 16321636 (2014).CrossRefGoogle ScholarPubMed
4.Yao, H., Shum, A.J., Cowan, M., Lahdesmaki, I., and Parviz, B.A.: A contact lens with embedded sensor for monitoring tear glucose level. Biosens. Bioelectron. 26, 32903296 (2011).CrossRefGoogle ScholarPubMed
5.Thomas, N., Lähdesmäki, I., and Parviz, B.A.: A contact lens with an integrated lactate sensor. Sens. Actuators B 162, 128134 (2012).CrossRefGoogle Scholar
6.Khodagholy, D., Curto, V.F., Fraser, K.J., Gurfinkel, M., Byrne, R., Diamond, D., Malliaras, G.G., Benito-Lopez, F., and Owens, R.M.: Organic electrochemical transistor incorporating an ionogel as a solid state electrolyte for lactate sensing. J. Mater. Chem. 22, 44404443 (2012).CrossRefGoogle Scholar
7.Jia, W., Bandodkar, A.J., Valdes-Ramirez, G., Windmiller, J.R., Yang, Z., Ramirez, J., Chan, G., and Wang, J.: Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 65536560 (2013).CrossRefGoogle ScholarPubMed
8.White, H.S.K., and Wrighton, G.P.: Chemical derivatization of an array of three gold microelectrodes with polypyrrole: fabrication of a molecule-based transistor. J. Am. Soc. 106, 53755377 (1984).CrossRefGoogle Scholar
9.Strakosas, X., Bongo, M., and Owens, R.M.: The organic electrochemical transistor for biological applications. J. Appl. Polym. Sci. 41735, 114 (2015).Google Scholar
10.Bernards, D.A., Macaya, D.J., Nikolou, M., DeFranco, J.A., Takamatsu, S., and Malliaras, G.G.: Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 18, 116120 (2008).CrossRefGoogle Scholar
11.Shim, N.Y., Bernards, D.A., Macaya, D.J., Defranco, J.A., Nikolou, M., Owens, R.M., and Malliaras, G.G.: All-plastic electrochemical transistor for glucose sensing using a ferrocene mediator. Sensors (Basel) 9, 98969902 (2009).CrossRefGoogle ScholarPubMed
12.Yang, S.Y., Defranco, J.A., Sylvester, Y.A., Gobert, T.J., Macaya, D.J., Owens, R.M., and Malliaras, G.G.: Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors. Lab Chip 9, 704708 (2009).CrossRefGoogle ScholarPubMed
13.Tang, H., Yan, F., Lin, P., Xu, J., and Chan, H.L.W.: Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Func. Mater. 21, 22642272 (2011).CrossRefGoogle Scholar
14.Elschner, A., Kirchmeyer, S., Lövenich, W., Merker, U., and Reuter, K.: PEDOT, Principles and Applications of an Intrinsically Conductive Polymer (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2011), pp. 113, 158.Google Scholar
15.Owens, R.M., and Malliaras, G.G.: Organic electronics at the interface with biology. MRS Bull. 35, 449456 (2010).CrossRefGoogle Scholar
16.Khodagholy, D., Rivnay, J., Sessolo, M., Gurfinkel, M., Leleux, P., Jimison, L.H., Stavrinidou, E., Herve, T., Sanaur, S., Owens, R.M., and Malliaras, G.G.: High transconductance organic electrochemical transistors. Nat. Commun. 4, 2133(1–6) (2013).CrossRefGoogle ScholarPubMed
17.Rivnay, J., Leleux, P., Sessolo, M., Khodagholy, D., Herve, T., Fiocchi, M., and Malliaras, G.G.: Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 70107014 (2013).CrossRefGoogle ScholarPubMed
18.Basiricò, L., Cosseddu, P., Scidà, A., Fraboni, B., Malliaras, G.G., and Bonfiglio, A.: Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors. Org. Electron. 13, 244248 (2012).CrossRefGoogle Scholar
19.Kaihovirta, N., Mäkelä, T., He, X., Wikman, C.-J., Wilén, C.-E., and Österbacka, R.: Printed all-polymer electrochemical transistors on patterned ion conducting membranes. Org. Electron. 11, 12071211 (2010).CrossRefGoogle Scholar
20.Andersson Ersman, P., Nilsson, D., Kawahara, J., Gustafsson, G., and Berggren, M.: Fast-switching all-printed organic electrochemical transistors. Org. Electron. 14, 12761280 (2013).CrossRefGoogle Scholar
21.David Nilsson, T.K., Svensson, P.-O., and Berggren, M.: An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sens. Actuators B – Chem. 86, 193197 (2002).CrossRefGoogle Scholar
22.Yang, S.Y., Cicoira, F., Byrne, R., Benito-Lopez, F., Diamond, D., Owens, R.M., and Malliaras, G.G.: Electrochemical transistors with ionic liquids for enzymatic sensing. Chem. Commun. (Camb.). 46, 79727974 (2010).CrossRefGoogle ScholarPubMed
23.Tan, S.N., and Miao, Y.: Amperometric hydrogen peroxide biosensor with silica sol–gel/chitosan film as immobilization matrix. Anal. Chim. Acta 437, 8793 (2001).Google Scholar
24.Xu, J., Chen, X., and Dong, S.: Organically modified sol–gel/chitosan composite based glucose biosensor. Electroanalysis 15, 608612 (2003).Google Scholar
25.Yang, W., Zhou, H., and Sun, C.: Synthesis of ferrocene-branched chitosan derivatives: redox polysaccharides and their application to reagentless enzyme-based biosensors. Macromol. Rapid Commun. 28, 265270 (2007).CrossRefGoogle Scholar
26.Bernards, D.A. and Malliaras, G.G.: Steady-state and transient behavior of organic electrochemical transistors. Adv. Func. Mater. 17, 35383544 (2007).CrossRefGoogle Scholar
27.Harvey, C.J., LeBouf, R.F., and Stefaniak, A.B.: Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. In Vitro 24, 17901796 (2010).CrossRefGoogle Scholar
Supplementary material: File

Scheiblin supplementary material

Scheiblin supplementary material 1

Download Scheiblin supplementary material(File)
File 418 KB
Supplementary material: File

Scheiblin supplementary material

Scheiblin supplementary material 2

Download Scheiblin supplementary material(File)
File 83 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Screen-printed organic electrochemical transistors for metabolite sensing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Screen-printed organic electrochemical transistors for metabolite sensing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Screen-printed organic electrochemical transistors for metabolite sensing
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *