Skip to main content Accessibility help
×
Home
Hostname: page-component-568f69f84b-n9pbb Total loading time: 0.187 Render date: 2021-09-19T15:15:36.307Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Printable ionizing radiation sensors fabricated from nanoparticulate blends of organic scintillators and polymer semiconductors

Published online by Cambridge University Press:  01 October 2019

Darcie Anderson
Affiliation:
School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW2308, Australia
Sophie Cottam
Affiliation:
School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW2308, Australia Centre for Organic Electronics, University of Newcastle, Callaghan, NSW2308, Australia
Heidianne Heim
Affiliation:
Centre for Organic Electronics, University of Newcastle, Callaghan, NSW2308, Australia
Huiming Zhang
Affiliation:
School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW2308, Australia
Natalie P. Holmes
Affiliation:
Centre for Organic Electronics, University of Newcastle, Callaghan, NSW2308, Australia
Matthew J. Griffith*
Affiliation:
School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW2308, Australia Centre for Organic Electronics, University of Newcastle, Callaghan, NSW2308, Australia
*Corresponding
Address all correspondence to Matthew J. Griffith at matthew.griffith@newcastle.edu.au
Get access

Abstract

This work established the feasibility of flexible solution-processed radiation sensors prepared from an organic scintillator (1-phenyl-3-mesityl-2-pyrazoline) and a biocompatible semiconducting polymer (violanthrone-79). Absorbance, steady-state, and time-resolved photoluminescence measurements demonstrated a high efficiency for the transfer of absorbed energy from the scintillator to the semiconductor. Blended nanoparticles containing both materials were fabricated in order to reduce the intermolecular distance between molecules, creating a highly efficient energy transfer pathway. Radiation-sensing devices were then constructed from the materials. These exhibited successful sensitivity for gamma radiation from a 137Cs source that was not present for the control semiconducting polymer alone.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Owens, A. and Peacock, A.: Compound semiconductor radiation detectors. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip 531, 18 (2004).CrossRefGoogle Scholar
2.Basirico, L., Ciavatti, A., Cramer, T., Cosseddu, P., Bonfiglio, A., and Fraboni, B.: Direct X-ray photoconversion in flexible organic thin film devices operated below 1V. Nat. Commun 7, 13063 (2016).CrossRefGoogle Scholar
3.Fraboni, B., Ciavatti, A., Basiricò, L., and Fraleoni-Morgera, A.: Organic semiconducting single crystals as solid-state sensors for ionizing radiation. Faraday Discuss 174, 219 (2014).10.1039/C4FD00102HCrossRefGoogle ScholarPubMed
4.Hwang, K., Jung, Y.-S., Heo, Y.-J., Scholes, F.H., Watkins, S.E., Subbiah, J., Jones, D.J., Kim, D.-Y., and Vak, D.: Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater 27, 1241 (2015).CrossRefGoogle ScholarPubMed
5.Eggenhuisen, T.M., Galagan, Y., Biezemans, A.F.K.V., Slaats, T.M.W.L., Voorthuijzen, W.P., Kommeren, S., Shanmugam, S., Teunissen, J.P., Hadipour, A., Verhees, W.J.H., Veenstra, S.C., Coenen, M.J.J., Gilot, J., Andriessen, R., and Groen, W.A.: High efficiency, fully inkjet printed organic solar cells with freedom of design. J. Mater. Chem. A 3, 7255 (2015).CrossRefGoogle Scholar
6.Griffith, M.J., Cooling, N.A., Vaughan, B., Elkington, D.C., Hart, A.S., Lyons, A.G., Qureshi, S., Belcher, W.J., and Dastoor, P.C.: Combining printing, coating and vacuum deposition on the roll-to-roll scale: a hybrid organic photovoltaics fabrication. IEEE J. Sel. Topics Quantum Electron 22, 1 (2016).CrossRefGoogle Scholar
7.Bergqvist, J., Österberg, T., Melianas, A., Ever Aguirre, L., Tang, Z., Cai, W., Ma, Z., Kemerink, M., Gedefaw, D., Andersson, M.R., and Inganäs, O.: Asymmetric photocurrent extraction in semitransparent laminated flexible organic solar cells. Flex. Electron 2, 4 (2018).CrossRefGoogle Scholar
8.Seyler, H., Haid, S., Kwon, T.-H., Jones, D.J., Bäuerle, P., Holmes, A.B., and Wong, W.W.H.: Continuous flow synthesis of organic electronic materials – case studies in methodology translation and scale-up. Aust. J. Chem 66, 151 (2013).CrossRefGoogle Scholar
9.Al-Mudhaffer, M.F., Griffith, M.J., Feron, K., Nicolaidis, N.C., Cooling, N.A., Zhou, X., Holdsworth, J., Belcher, W.J., and Dastoor, P.C.: The origin of performance limitations in miniemulsion nanoparticulate organic photovoltaic devices. Solar Energy Mater. Solar Cells 175, 77 (2018).CrossRefGoogle Scholar
10.Lipomi, D.J. and Bao, Z.: Stretchable and ultraflexible organic electronics. MRS Bull 42, 93 (2017).CrossRefGoogle Scholar
11.Griffith, M.J., Cooling, N.A., Elkington, D.C., Muller, E., Belcher, W.J., and Dastoor, P.C.: Printable sensors for explosive detonation. Appl. Phys. Lett 105, 143301 (2014).CrossRefGoogle Scholar
12.Elkington, D., Wasson, M., Belcher, W., Dastoor, P.C., and Zhou, X.: Printable organic thin film transistors for glucose detection incorporating inkjet-printing of the enzyme recognition element. Appl. Phys. Lett 106, 263301 (2015).CrossRefGoogle Scholar
13.Brabec, C.J., Zerza, G., Cerullo, G., De Silvestri, S., Luzzati, S., Hummelen, J.C., and Sariciftci, S.: Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett 340, 232 (2001).CrossRefGoogle Scholar
14.Rogers, J.A., Someya, T., and Huang, Y.: Materials and mechanics for stretchable electronics. Science 327, 1603 (2010).10.1126/science.1182383CrossRefGoogle ScholarPubMed
15.Reineke, S., Lindner, F., Schwartz, G., Seidler, N., Walzer, K., Lüssem, B., and Leo, K.: White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234 (2009).CrossRefGoogle ScholarPubMed
16.Griffith, M.J., Willis, M., Kumar, P., Holdsworth, J.L., Bezuidenhout, H., Zhou, X., Belcher, W.J., and Dastoor, P.C.: Activation of organic photovoltaic light detectors using bend leakage from optical fibres. ACS Appl. Mater. Interfaces 8, 7926 (2016).CrossRefGoogle Scholar
17.Pastorelli, F., Schmidt, T.M., Hösel, M., Søndergaard, R.R., Jørgensen, M., and Krebs, F.C.: The organic power transistor: roll-to-roll manufacture, thermal behavior, and power handling when driving printed electronics. Adv. Eng. Mater. 18, 51 (2016).CrossRefGoogle Scholar
18.Holmes, N.P., Marks, M., Cave, J.M., Feron, K., Barr, M.G., Fahy, A., Sharma, A., Pan, X., Kilcoyne, D.A.L., Zhou, X., Lewis, D.A., Andersson, M.R., van Stam, J., Walker, A.B., Moons, E., Belcher, W.J., and Dastoor, P.C.: Engineering two-phase and three-phase microstructures from water-based dispersions of nanoparticles for eco-friendly polymer solar cell applications. Chem. Mater 30, 6521 (2018).CrossRefGoogle Scholar
19.Sankaran, S., Glaser, K., Gärtner, S., Rödlmeier, T., Sudau, K., Hernandez-Sosa, G., and Colsmann, A.: Fabrication of polymer solar cells from organic nanoparticle dispersions by doctor blading or ink-jet printing. Org. Electron 28, 118 (2016).CrossRefGoogle Scholar
20.Ameri, M., Al-Mudhaffer, M., Almyahi, F., Fardell, G.C., Marks, M., Al-Ahmad, A., Fahy, A., Andersen, T., Elkington, D.C., Feron, K., Dastoor, P.C., and Griffith, M.J.: The role of stabilizing surfactant on capacitance, charge and ion transport in organic nanoparticle-based photdiodes. ACS Appl. Mater. Interfaces 11, 10074 (2019).CrossRefGoogle Scholar
21.Lai, S., Cosseddu, P., Basiricò, L., Ciavatti, A., Fraboni, B., and Bonfiglio, A.: A highly sensitive, direct X-ray detector based on a low-voltage organic field-effect transistor. Adv. Electron. Mater 3, 1600409 (2017).CrossRefGoogle Scholar
22.Intaniwet, A., Mills, C.A., Shkunov, M., Thiem, H., Keddie, J.L., and Sellin, P.J.: Characterization of thick film poly(triarylamine) semiconductor diodes for direct x-ray detection. J. Appl. Phys 106, 064513 (2009).CrossRefGoogle Scholar
23.Büchele, P., Richter, M., Tedde, S.F., Matt, G.J., Ankah, G.N., Fischer, R., Biele, M., Metzger, W., Lilliu, S., Bikondoa, O., Macdonald, J.E., Brabec, C.J., Kraus, T., Lemmer, U., and Schmidt, O.: X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photonics 9, 843 (2015).CrossRefGoogle Scholar
24.Agostinelli, T., Campoy-Quiles, M., Blakesley, J.C., Speller, R., Bradley, D.D.C., and Nelson, J.: A polymer/fullerene based photodetector with extremely low dark current for x-ray medical imaging applications. Appl. Phys. Lett 93, 20 (2008).CrossRefGoogle Scholar
25.Oliveira, J., Correia, V., Sowade, E., Etxebarria, I., Rodriguez, R.D., Mitra, K.Y., Baumann, R.R., and Lanceros-Mendez, S.: Indirect X-ray detectors based on inkjet-printed photodetectors with a screen-printed scintillator layer. ACS Appl. Mater. Interfaces 10, 12904 (2018).CrossRefGoogle ScholarPubMed
26.Clegg, R.M.: Fluorescence resonance energy transfer. Curr. Opin. Biotechnol 6, 103 (1995).CrossRefGoogle ScholarPubMed
27.Lakowicz, J. R.: Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, USA, 2006).CrossRefGoogle Scholar
28.Brouwer, A.M.: Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem 83, 2213 (2011).10.1351/PAC-REP-10-09-31CrossRefGoogle Scholar
29.Dacres, H., Wang, J., Dumancic, M.M., and Trowell, S.C.: Experimental determination of the Förster distance for two commonly used bioluminescent resonance energy transfer pairs. Anal. Chem 82, 432 (2010).CrossRefGoogle ScholarPubMed
30.Gopich, I.V. and Szabo, A.: Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc. Natl. Acad. Sci. USA 109, 7747 (2012).CrossRefGoogle ScholarPubMed
Supplementary material: File

Anderson et al. supplementary material

Anderson et al. supplementary material

Download Anderson et al. supplementary material(File)
File 1 MB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Printable ionizing radiation sensors fabricated from nanoparticulate blends of organic scintillators and polymer semiconductors
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Printable ionizing radiation sensors fabricated from nanoparticulate blends of organic scintillators and polymer semiconductors
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Printable ionizing radiation sensors fabricated from nanoparticulate blends of organic scintillators and polymer semiconductors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *