Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-bv7lh Total loading time: 0.279 Render date: 2021-06-18T04:07:00.090Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Material decomposition with dual- and multi-energy computed tomography

Published online by Cambridge University Press:  25 November 2020

Rajesh Bhayana
Affiliation:
Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
Anushri Parakh
Affiliation:
Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
Avinash Kambadakone
Affiliation:
Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
Corresponding
E-mail address:
Get access

Abstract

Conventional computed tomography (CT) remains the workhorse of cross-sectional medical imaging. But dual- and multi-energy CT allows for more specific material decomposition, enabling distinct advantages in the clinical setting. In this review, we describe the basic principles behind material decomposition in dual- and multi-energy CT, outline the techniques used to acquire images, and explore how enhanced material decomposition leads to improved patient care. We also explore areas of active research and future directions, including photon-counting CT, that have the potential to revolutionize CT in clinical use.

Type
Prospective Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Hounsfield, G.N.: Computerized transverse axial scanning (tomography). 1. Description of system. Br. J. Radiol. 46, 10161022 (1973).10.1259/0007-1285-46-552-1016CrossRefGoogle ScholarPubMed
Marshall, W.H. Jr, Easter, W., and Zatz, L.M.: Analysis of the dense lesion at computed tomography with dual kVp scans. Radiology 124, 8789 (1977).10.1148/124.1.87CrossRefGoogle ScholarPubMed
Zatz, L.M.: The effect of the kVp level on EMI values. Selective imaging of various materials with different kVp settings. Radiology 119, 683688 (1976).10.1148/119.3.683CrossRefGoogle ScholarPubMed
Rutherford, R.A., Pullan, B.R., and Isherwood, I.: Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology 11, 1521 (1976).10.1007/BF00327253CrossRefGoogle ScholarPubMed
Alvarez, R.E. and Macovski, A.: Energy-selective reconstructions in X-ray computerized tomography. Phys. Med. Biol. 21, 733744 (1976).10.1088/0031-9155/21/5/002CrossRefGoogle ScholarPubMed
Flohr, T.G., McCollough, C.H., Bruder, H., Petersilka, M., Gruber, K., Süss, C., Grasruck, M., Stierstorfer, K., Krauss, B., Raupach, R., Primak, A.N., Küttner, A., Achenbach, S., Becker, C., Kopp, A., and Ohnesorge, B.M.: First performance evaluation of a dual-source CT (DSCT) system. Eur. Radiol. 16, 256268 (2006).10.1007/s00330-005-2919-2CrossRefGoogle ScholarPubMed
Graser, A., Johnson, T.R.C., Chandarana, H., and Macari, M.: Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur. Radiol. 19, 1323 (2009).10.1007/s00330-008-1122-7CrossRefGoogle ScholarPubMed
Petersilka, M., Stierstorfer, K., Bruder, H., and Flohr, T.: Strategies for scatter correction in dual source CT. Med. Phys. 37, 59715992 (2010).10.1118/1.3504606CrossRefGoogle ScholarPubMed
Primak, A.N., Ramirez Giraldo, J.C., Liu, X., Yu, L., and McCollough, C.H.: Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med. Phys. 36, 13591369 (2009).10.1118/1.3083567CrossRefGoogle ScholarPubMed
Achenbach, S., Marwan, M., Schepis, T., Pflederer, T., Bruder, H., Allmendinger, T., Petersilka, M., Anders, K., Lell, M., Kuettner, A., Ropers, D., Daniel, W.G., and Flohr, T.: High-pitch spiral acquisition: a new scan mode for coronary CT angiography. J. Cardiovasc. Comput. Tomogr. 3, 117121 (2009).CrossRefGoogle ScholarPubMed
Johnson, T.R.C., Krauss, B., Sedlmair, M., Grasruck, M., Bruder, H., Morhard, D., Fink, C., Weckbach, S., Lenhard, M., Schmidt, B., Flohr, T., Reiser, M.F., and Becker, C.R.: Material differentiation by dual energy CT: initial experience. Eur. Radiol. 17, 15101517 (2007).CrossRefGoogle ScholarPubMed
Wichmann, J.L., Hardie, A.D., Schoepf, U.J., Felmly, L.M., Perry, J.D., Varga-Szemes, A., Mangold, S., Caruso, D., Canstein, C., Vogl, T.J., and De Cecco, C.N.: Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur. Radiol. 27, 642650 (2017).10.1007/s00330-016-4383-6CrossRefGoogle ScholarPubMed
Kachelrieß, M.: Iterative reconstruction techniques: what do they mean for cardiac CT? Curr. Cardiovasc. Imaging Rep. 6, 268281 (2013).10.1007/s12410-013-9203-7CrossRefGoogle Scholar
Macovski, A., Alvarez, R.E., Chan, J.L.-H., Stonestrom, J.P., and Zatz, L.M.: Energy dependent reconstruction in X-ray computerized tomography. Comput. Biol. Med. 6, 325336 (1976).10.1016/0010-4825(76)90069-XCrossRefGoogle ScholarPubMed
Johnson, T.R.C.: Dual-energy CT: general principles. AJR Am. J. Roentgenol. 199, S3S8 (2012).10.2214/AJR.12.9116CrossRefGoogle ScholarPubMed
McCollough, C.H., Leng, S., Yu, L., and Fletcher, J.G.: Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276, 637653 (2015).10.1148/radiol.2015142631CrossRefGoogle ScholarPubMed
Goo, H.W. and Goo, J.M.: Dual-energy CT: new horizon in medical imaging. Korean J. Radiol. 18, 555569 (2017).10.3348/kjr.2017.18.4.555CrossRefGoogle ScholarPubMed
Li, B.: Dual-energy CT with fast-kVp switching and Its applications in orthopedics. OMICS J. Radiol. 02 (2013). https://doi.org/10.4172/2167-7964.1000137.CrossRefGoogle Scholar
Takrouri, H.S., Alnassar, M.M., Amirabadi, A., Babyn, P.S., Moineddin, R., Padfield, N.L., BenDavid, G., and Doria, A.S.: Metal artifact reduction: added value of rapid-kilovoltage-switching dual-energy CT in relation to single-energy CT in a piglet animal model. AJR Am. J. Roentgenol. 205, W352W359 (2015).CrossRefGoogle Scholar
Mahmood, U., Horvat, N., Horvat, J.V., Ryan, D., Gao, Y., Carollo, G., DeOcampo, R., Do, R.K., Katz, S., Gerst, S., Schmidtlein, C.R., Dauer, L., Erdi, Y., and Mannelli, L.: Rapid switching kVp dual energy CT: value of reconstructed dual energy CT images and organ dose assessment in multiphasic liver CT exams. Eur. J. Radiol. 102, 102108 (2018).10.1016/j.ejrad.2018.02.022CrossRefGoogle ScholarPubMed
Vlassenbroek, A.: Dual layer CT. In Dual Energy CT in Clinical Practice, edited by Johnson, T., Fink, C., Schönberg, S.O., and Reiser, M.F. (Springer, Berlin, 2011) pp. 2134.10.1007/174_2010_56CrossRefGoogle Scholar
Rassouli, N., Etesami, M., Dhanantwari, A., and Rajiah, P.: Detector-based spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging 8, 589598 (2017).10.1007/s13244-017-0571-4CrossRefGoogle ScholarPubMed
Wellenberg, R.H.H., Boomsma, M.F., van Osch, J.A.C., Vlassenbroek, A., Milles, J., Edens, M.A., Streekstra, G.J., Slump, C.H., and Maas, M.: Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses. Eur. J. Radiol. 88, 6170 (2017).10.1016/j.ejrad.2017.01.002CrossRefGoogle ScholarPubMed
Oda, S., Nakaura, T., Utsunomiya, D., Funama, Y., Taguchi, N., Imuta, M., Nagayama, Y., and Yamashita, Y.: Clinical potential of retrospective on-demand spectral analysis using dual-layer spectral detector-computed tomography in ischemia complicating small-bowel obstruction. Emerg. Radiol. 24, 431434 (2017).10.1007/s10140-017-1511-9CrossRefGoogle ScholarPubMed
Sauter, A.P., Kopp, F.K., Münzel, D., Dangelmaier, J., Renz, M., Renger, B., Braren, R., Fingerle, A.A., Rummeny, E.J., and Noël, P.B.: Accuracy of iodine quantification in dual-layer spectral CT: influence of iterative reconstruction, patient habitus and tube parameters. Eur. J. Radiol. 102, 8388 (2018).10.1016/j.ejrad.2018.03.009CrossRefGoogle ScholarPubMed
van Ommen, F., de Jong, H.W.A.M., Dankbaar, J.W., Bennink, E., Leiner, T., and Schilham, A.M.R.: Dose of CT protocols acquired in clinical routine using a dual-layer detector CT scanner: a preliminary report. Eur. J. Radiol. 112, 6571 (2019).10.1016/j.ejrad.2019.01.011CrossRefGoogle ScholarPubMed
Ananthakrishnan, L., Duan, X., Xi, Y., Lewis, M.A., Pearle, M.S., Antonelli, J.A., Goerne, H., Kolitz, E.M., Abbara, S., Lenkinski, R.E., Fielding, J.R., and Leyendecker, J.R.: Dual-layer spectral detector CT: non-inferiority assessment compared to dual-source dual-energy CT in discriminating uric acid from non-uric acid renal stones ex vivo. Abdom. Radiol. 43, 30753081 (2018).10.1007/s00261-018-1589-xCrossRefGoogle ScholarPubMed
Punjabi, G.V.: Multi-energy spectral CT: adding value in emergency body imaging. Emerg. Radiol. 25, 197204 (2018).10.1007/s10140-017-1569-4CrossRefGoogle ScholarPubMed
Kalisz, K., Rassouli, N., Dhanantwari, A., Jordan, D., and Rajiah, P.: Noise characteristics of virtual monoenergetic images from a novel detector-based spectral CT scanner. Eur. J. Radiol. 98, 118125 (2018).10.1016/j.ejrad.2017.11.005CrossRefGoogle ScholarPubMed
Heye, T., Nelson, R.C., Ho, L.M., Marin, D., and Boll, D.T.: Dual-energy CT applications in the abdomen. AJR Am. J. Roentgenol. 199, S64S70 (2012).10.2214/AJR.12.9196CrossRefGoogle ScholarPubMed
Silva, A.C., Morse, B.G., Hara, A.K., Paden, R.G., Hongo, N., and Pavlicek, W.: Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31, 10311046 (2011).10.1148/rg.314105159CrossRefGoogle ScholarPubMed
Vogl, T.J., Schulz, B., Bauer, R.W., Stöver, T., Sader, R., and Tawfik, A.M.: Dual-energy CT applications in head and neck imaging. AJR Am. J. Roentgenol. 199, S34S39 (2012).CrossRefGoogle ScholarPubMed
Sui, X., Xu, X., Song, L., Du, Q., Wang, X., Jing, Z., and Song, W.: Effect of third-generation dual-source CT technology on image quality of Low-dose chest CT. Zhongguo Yi Xue Ke Xue yuan Xue Bao 39, 1720 (2017).Google ScholarPubMed
Schicchi, N., Fogante, M., Esposto Pirani, P., Agliata, G., Basile, M.C., Oliva, M., Agostini, A., and Giovagnoni, A.: Third-generation dual-source dual-energy CT in pediatric congenital heart disease patients: state-of-the-art. Radiol. Med. 124, 12381252 (2019).10.1007/s11547-019-01097-7CrossRefGoogle ScholarPubMed
Willemink, M.J., Persson, M., Pourmorteza, A., Pelc, N.J., and Fleischmann, D.: Photon-counting CT: technical principles and clinical prospects. Radiology 289, 293312 (2018).10.1148/radiol.2018172656CrossRefGoogle ScholarPubMed
Taguchi, K. and Iwanczyk, J.S.: Vision 20/20: single photon counting x-ray detectors in medical imaging. Med. Phys. 40, 100901 (2013).10.1118/1.4820371CrossRefGoogle ScholarPubMed
Leng, S., Bruesewitz, M., Tao, S., Rajendran, K., Halaweish, A.F., Campeau, N.G., Fletcher, J.G., and McCollough, C.H.: Photon-counting detector CT: system design and clinical applications of an emerging technology. Radiographics 39, 729743 (2019).10.1148/rg.2019180115CrossRefGoogle ScholarPubMed
Schlomka, J.P., Roessl, E., Dorscheid, R., Dill, S., Martens, G., Istel, T., Bäumer, C., Herrmann, C., Steadman, R., Zeitler, G., Livne, A., and Proksa, R.: Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys. Med. Biol. 53, 40314047 (2008).10.1088/0031-9155/53/15/002CrossRefGoogle ScholarPubMed
Roessl, E. and Proksa, R.: K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys. Med. Biol. 52, 46794696 (2007).10.1088/0031-9155/52/15/020CrossRefGoogle ScholarPubMed
Rodriguez-Granillo, G.A., Carrascosa, P., Cipriano, S., De Zan, M., Deviggiano, A., Capunay, C., and Cury, R.C.: Beam hardening artifact reduction using dual energy computed tomography: implications for myocardial perfusion studies. Cardiovasc. Diagn. Ther. 5, 7985 (2015).Google ScholarPubMed
Katsura, M., Sato, J., Akahane, M., Kunimatsu, A., and Abe, O.: Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists. Radiographics 38, 450461 (2018).10.1148/rg.2018170102CrossRefGoogle ScholarPubMed
Connolly, M.J., McInnes, M.D.F., El-Khodary, M., McGrath, T.A., and Schieda, N.: Diagnostic accuracy of virtual non-contrast enhanced dual-energy CT for diagnosis of adrenal adenoma: a systematic review and meta-analysis. Eur. Radiol. 27, 43244335 (2017).10.1007/s00330-017-4785-0CrossRefGoogle ScholarPubMed
Helck, A., Hummel, N., Meinel, F.G., Johnson, T., Nikolaou, K., and Graser, A.: Can single-phase dual-energy CT reliably identify adrenal adenomas? Eur. Radiol. 24, 16361642 (2014).10.1007/s00330-014-3192-zCrossRefGoogle ScholarPubMed
Marin, D., Davis, D., Roy Choudhury, K., Patel, B., Gupta, R.T., Mileto, A., and Nelson, R.C.: Characterization of small focal renal lesions: diagnostic accuracy with single-phase contrast-enhanced dual-energy CT with material attenuation analysis compared with conventional attenuation measurements. Radiology 284, 737747 (2017).10.1148/radiol.2017161872CrossRefGoogle ScholarPubMed
Wisenbaugh, E.S., Paden, R.G., Silva, A.C., and Humphreys, M.R.: Dual-energy vs conventional computed tomography in determining stone composition. Urology 83, 12431247 (2014).10.1016/j.urology.2013.12.023CrossRefGoogle ScholarPubMed
Primak, A.N., Fletcher, J.G., Vrtiska, T.J., Dzyubak, O.P., Lieske, J.C., Jackson, M.E., Williams, J.C. Jr, and McCollough, C.H.: Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad. Radiol. 14, 14411447 (2007).10.1016/j.acra.2007.09.016CrossRefGoogle ScholarPubMed
Qu, M., Jaramillo-Alvarez, G., Ramirez-Giraldo, J.C., Liu, Y., Duan, X., Wang, J., Vrtiska, T.J., Krambeck, A.E., Lieske, J., and McCollough, C.H.: Urinary stone differentiation in patients with large body size using dual-energy dual-source computed tomography. Eur. Radiol. 23, 14081414 (2013).10.1007/s00330-012-2727-4CrossRefGoogle ScholarPubMed
Fung, G.S.K., Kawamoto, S., Matlaga, B.R., Taguchi, K., Zhou, X., Fishman, E.K., and Tsui, B.M.W.: Differentiation of kidney stones using dual-energy CT with and without a tin filter. AJR Am. J. Roentgenol. 198, 13801386 (2012).10.2214/AJR.11.7217CrossRefGoogle ScholarPubMed
Nute, J.L., Jacobsen, M.C., Chandler, A., Cody, D.D., and Schellingerhout, D.: Dual-Energy computed tomography for the characterization of intracranial hemorrhage and calcification: a systematic approach in a phantom system. Invest. Radiol. 52, 3041 (2017).10.1097/RLI.0000000000000300CrossRefGoogle Scholar
Dekeyzer, S., Nikoubashman, O., Lutin, B., De Groote, J., Vancaester, E., De Blauwe, S., Hemelsoet, D., Wiesmann, M., and Defreyne, L.: Distinction between contrast staining and hemorrhage after endovascular stroke treatment: one CT is not enough. J. Neurointerv. Surg. 9, 394398 (2017).10.1136/neurintsurg-2016-012290CrossRefGoogle ScholarPubMed
Almqvist, H., Holmin, S., and Mazya, M.V.: Dual energy CT after stroke thrombectomy alters assessment of hemorrhagic complications. Neurology 93, e1068e1075 (2019).10.1212/WNL.0000000000008093CrossRefGoogle ScholarPubMed
Gupta, R., Phan, C.M., Leidecker, C., Brady, T.J., Hirsch, J.A., Nogueira, R.G., and Yoo, A.J.: Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 257, 205211 (2010).CrossRefGoogle ScholarPubMed
Uotani, K., Watanabe, Y., Higashi, M., Nakazawa, T., Kono, A.K., Hori, Y., Fukuda, T., Kanzaki, S., Yamada, N., Itoh, T., Sugimura, K., and Naito, H.: Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography. Eur. Radiol. 19, 20602065 (2009).CrossRefGoogle ScholarPubMed
Wortman, J.R., Uyeda, J.W., Fulwadhva, U.P., and Sodickson, A.D.: Dual-energy CT for abdominal and pelvic trauma. Radiographics 38, 586602 (2018).10.1148/rg.2018170058CrossRefGoogle ScholarPubMed
Dalbeth, N., Choi, H.K., Joosten, L.A.B., Khanna, P.P., Matsuo, H., Perez-Ruiz, F., and Stamp, L.K.: Gout. Nat. Rev. Dis. Primers 5, 69 (2019).10.1038/s41572-019-0115-yCrossRefGoogle ScholarPubMed
Kaup, M., Wichmann, J.L., Scholtz, J.-E., Beeres, M., Kromen, W., Albrecht, M.H., Lehnert, T., Boettcher, M., Vogl, T.J., and Bauer, R.W.: Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology 280, 510519 (2016).10.1148/radiol.2016150472CrossRefGoogle ScholarPubMed
Bier, G., Bongers, M.N., Ditt, H., Bender, B., Ernemann, U., and Horger, M.: Enhanced gray-white matter differentiation on non-enhanced CT using a frequency selective non-linear blending. Neuroradiology 58, 649655 (2016).CrossRefGoogle ScholarPubMed
Mohammed, M.F., Marais, O., Min, A., Ferguson, D., Jalal, S., Khosa, F., O'Keeffe, M., O'Connell, T., Schmiedeskamp, H., Krauss, B., Rohr, A., and Nicolaou, S.: Unenhanced dual-energy computed tomography: visualization of brain edema. Invest. Radiol. 53, 6369 (2018).10.1097/RLI.0000000000000413CrossRefGoogle ScholarPubMed
Chou, H., Chin, T.Y., and Peh, W.C.G.: Dual-energy CT in gout: a review of current concepts and applications. J. Med. Radiat. Sci. 64, 4151 (2017).10.1002/jmrs.223CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Material decomposition with dual- and multi-energy computed tomography
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Material decomposition with dual- and multi-energy computed tomography
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Material decomposition with dual- and multi-energy computed tomography
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *