Hostname: page-component-7dc689bd49-bfm8c Total loading time: 0 Render date: 2023-03-20T08:51:58.539Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Boron doping of ultrananocrystalline diamond films by thermal diffusion process

Published online by Cambridge University Press:  13 August 2018

Pablo Tirado
Departamento de Investigación en Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, Sonora 83000, México Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
Jesus J. Alcantar-Peña
Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
Elida de Obaldia
Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA Facultad de Ciencia y Tecnología, Universidad Tecnológica de Panamá, Panamá, República de Panamá
Yuriy Kudriavtsev
Departamento de Ingeniería Eléctrica, CINVESTAV-IPN, Ciudad de México, México
Rafael García
Departamento de Investigación en Física, Universidad de Sonora, Rosales y Luis Encinas, Hermosillo, Sonora 83000, México
Orlando Auciello*
Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080, USA Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
Address all correspondence to Orlando Auciello at
Get access


A novel process for Boron doping of ultrananocrystalline diamond (UNCD) films, using thermal diffusion, is described. Hall measurements show an increase in carrier concentration from 1013 to 1020 cm−3. Ultraviolet Photoelectron Spectroscopy and x-ray Photoelectron Spectroscopy show a band gap of 4.4 eV, a work function of 5.1 eV and a Fermi level at 2.0 eV above the valence band. Boron atoms distribution through UNCD films, was measured by Secondary Ion Mass Spectrometry, revealing Boron atoms diffusivity of about 10−14 cm2/s. Raman spectroscopy and x-ray Diffraction analysis revealed that UNCD films did not suffer graphitization nor structural damage during annealing.

Research Letters
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Auciello, O. and Sumant, A.V.: Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices. Diamond Relat. Mater. 19, 699 (2010); ( Scholar
2.Fabisiak, K. and Staryga, E.: CVD diamond: from growth to application. J. Achievements Mater. Manuf. Eng. 37, 264 (2009).Google Scholar
3.Kraft, A.: Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci. 2, 355 (2007).Google Scholar
4.Suman, A.V., Krauss, A.R., Gruen, D.M., Auciello, O., Erdemir, A., Wlliams, M., Artiles, A.F., and Adams, W.: Ultrananocrystalline diamond film as a wear-resistant and protective coating for mechanical seal applications. Tribol. Trans. 48, 24 (2005); ( Scholar
5.Zeng, H., Konicek, A.R., Moldovan, N., Mangolini, F., Jacobs, T., Wylie, I., Arumugam, P.U., Siddiqui, S., Carpick, R.W., and Carlisle, J.A.: Boron-doped ultrananocrystalline diamond synthesized with an H-rich/Ar-lean gas system. Carbon. N. Y. 84, 103 (2015).CrossRefGoogle Scholar
6.Xiao, X., Wang, J., Carlisle, J.A., Mech, B., Greenberg, R., Freda, R., Humayun, M.S., Weiland, J., and Auciello, O.: In Vitro and In Vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips. J. Biomed. Mater. 77B, 273 (2006).CrossRefGoogle Scholar
7.Suzuki, M., Ono, T., Sakuma, N., and Sakai, T.: Low-temperature thermionic emission from nitrogen-doped nanocrystalline diamond films on n-type Si grown by MPCVD. Diamond Relat. Mater. 18, 1274 (2009).CrossRefGoogle Scholar
8.Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyette, A.N., Gruen, D.M., Krauss, A.R., Schlueter, J., Sumant, A.V., and Zapol, P.: Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl. Phys. Lett. 79, 1441 (2001).CrossRefGoogle Scholar
9.Bhattacharyya, S.: Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond. Phys. Rev. B70, 125412 (2004).CrossRefGoogle Scholar
10.Williams, O.: Growth and properties of nanocrystalline diamond films. Physica Status Solidi: Appl. Mater. Sci. 203, 3375 (2006).CrossRefGoogle Scholar
11.Sun, Q., Wang, J., Weng, J., and Liu, F.: Surface structure and electric properties of nitrogen incorporated NCD films. Vacuum 137, 155 (2017).CrossRefGoogle Scholar
12.Kato, H., Takeuchi, D., Ogura, M., Yamada, T., Kataoka, M., Kimura, Y., Sobue, S., Nebel, C.E., Yamasaki, S., Meir, S., Stephanos, C., Geballe, T.H., Mannhart, J., Suzuki, M., Ono, T., Sakuma, N., Sakai, T., Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z.X., Melosh, N.A., Sun, T., and Grilj, M.: Thermionic emission characterization of boron-doped microcrystalline diamond films at elevated temperatures. Diamond Relat. Mater. 5, 165 (2013).Google Scholar
13.Seo, J., Wu, H., Mikael, S., Mi, H., Blanchard, J.P., Venkataramanan, G., Zhou, W., Gong, S., and Morgan, D.: Thermal diffusion boron doping of single-crystal natural diamond. J. Appl. Phys. 119, 205703 (2016).CrossRefGoogle Scholar
14.Wort, C.J.H. and Balmer, R.S.: Diamond as an electronic material. Mater. Today 11, 22 (2008).CrossRefGoogle Scholar
15.Basher, M.K. and Shorowordi, K.M.: Fabrication of monocrystalline silicon solar cell using phosphorous diffusion technique. Int. J. Sci. Res. Pub. 5, 1 (2015).Google Scholar
16.Bentzen, A., Schubert, G., Christensen, J.S., Svensson, B.G., and Holt, A.: Influence of temperature during phosphorus emitter diffusion from a spray-on source in multicrystalline silicon solar cell processing. J. Optoelectron. Adv. Mater. 15, 3 (2013).Google Scholar
17.Filik, J.: Raman spectroscopy: a simple, non-destructive way to characterize diamond and diamond-like materials. Spectrosc. Eur. 17, 10 (2005).Google Scholar
18.Birrell, J., Gerbi, J.E., Auciello, O., Gibson, J.M., Johnson, J., and Carlisle, J.A.: Interpretation of the Raman spectra of ultrananocrystalline diamond. Diamond Relat. Mater. 14, 86 (2005).CrossRefGoogle Scholar
19.Fuentes-Fernandez, E.M.A., Alcantar-Peña, J.J., Lee, G., Boulom, A., Phan, H., Smith, B., Nguyen, T., Sahoo, S., Ruiz-Zepeda, F., Arellano-Jimenez, M.J., Gurman, P., Martinez-Perez, C.A., Yacaman, M.J., Katiyar, R.S., and Auciello, O.: Synthesis and characterization of microcrystalline diamond to ultrananocrystalline diamond films via Hot Filament Chemical Vapor Deposition for scaling to large area applications. Thin Solid Films 603, 62 (2016).CrossRefGoogle Scholar
20.Alcantar-Peña, J.J., Lee, G., Fuentes-Fernandez, E.M.A., Gurman, P., Quevedo-Lopez, M., Sahoo, S., Katiyar, R.S., Berman, D., and Auciello, O.: Science and technology of diamond films grown on HfO2 interface layer for transformational technologies. Diamond Relat. Mater. 69, 221 (2016).CrossRefGoogle Scholar
21.Cui, J., Ristein, J. and Ley, L.: Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett. 81, 429 (1998).CrossRefGoogle Scholar
22.Bob Downs, R.S. and Bartelmehs, K.: Interactive software for calculating and displaying x-ray or neutron powder diffractometer patterns of crystalline materials. Am. Mineral. 78, 1104 (1993).Google Scholar
23.Tyrrell, H.J.V.: The origin and present status of Fick's diffusion law. J. Chem. Educ. 41, 397 (1964).CrossRefGoogle Scholar
24.Sung, T., Popovici, G., Prelas, M.A., and Wilson, R.G.: Boron diffusion coefficient in diamond. MRS Proc. 416, 467 (1996).CrossRefGoogle Scholar
25.Popovici, G., Sung, T., Khasawinah, S., Prelas, M.A., and Wilson, R.G.: Forced diffusion of impurities in natural diamond and polycrystalline diamond films. J. Appl. Phys. 77, 5625 (1995).CrossRefGoogle Scholar
26.Vickerman, J.C. and Gilmore, I.S. (eds.): Surface Analysis—The Principal Techniques, 2nd ed (John Wiley and Sons, Ltd., Hoboken, New Jersey, 2009).CrossRefGoogle Scholar
27.Nichols, M.T., Li, W., Pei, D., Antonelli, G.A., Lin, Q., Banna, S., Nishi, Y., and Shoet, J.L.: Measurement of bandgap energies in low-k organosilicates. J. Appl. Phys. 115, 94105 (2014).CrossRefGoogle Scholar
28.Pelaz, V.: Activation and deactivation of implanted Boron in Si. Appl. Phys. Lett. 75, 662 (1999).CrossRefGoogle Scholar
Supplementary material: File

Tirado et al. supplementary material

Figures S1-S3

Download Tirado et al. supplementary material(File)
File 1 MB