Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-m9wwp Total loading time: 0.182 Render date: 2021-08-01T23:29:26.504Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Antibody-conjugated near-infrared luminescent silicon quantum dots for biosensing

Published online by Cambridge University Press:  26 July 2019

Hiroto Yanagawa
Affiliation:
Technology Innovation Division, Panasonic Corporation, Yagumo-naka-machi, Moriguchi, Osaka 570-8501, Japan Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Asuka Inoue
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Hiroshi Sugimoto
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Masahiko Shioi
Affiliation:
Life Solutions Company, Panasonic Corporation, Kadoma, Osaka 571-8686, Japan
Minoru Fujii
Affiliation:
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Corresponding
E-mail address:
Get access

Abstract

A process for bioconjugation of an IgG antibody and silicon quantum dots (Si-QDs) having the luminescence in the near-infrared (NIR) range was developed. For the bioconjugation, the surface of water-soluble all-inorganic Si-QDs was functionalized by using silane-coupling agents. In amino-functionalized Si-QDs, successful conjugation was achieved without strongly affecting the luminescence property. Detailed analyses revealed that Si-QDs are bound covalently to both the light and heavy chains of an IgG antibody. It was also confirmed that the binding property of an IgG antibody with antigen nucleoprotein was not ruined by the process. The successful conjugation of an IgG antibody and NIR luminescent Si-QDs paves the way for designing environmentally friendly bio-sensing and -imaging processes.

Type
Research Letters
Information
MRS Communications , Volume 9 , Issue 3 , September 2019 , pp. 1079 - 1086
Copyright
Copyright © The Author(s) 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Tynan, C.J., Clarke, D.T., Coles, B.C., Rolfe, D.J., Martin-Fernandez, M.L., and Webb, S.E.D.: Multicolour single molecule imaging in cells with near infra–red dyes. PLoS One 7, e36265.1e36265.7 (2012).CrossRefGoogle ScholarPubMed
2.Gao, X., Yang, L., Petros, J.A., Marshall, F.F., Simons, J.W., and Nie, S.: In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 16, 6372 (2005).CrossRefGoogle ScholarPubMed
3.Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763775 (2008).CrossRefGoogle ScholarPubMed
4.Chan, W.C.W., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., and Nie, S.: Luminescent quantum dots for multiplexed biological detection and imaging. Anal. Biotechnol. 13, 4046 (2002).Google Scholar
5.Chan, W.C. and Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 20162018 (1998).CrossRefGoogle ScholarPubMed
6.Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., and Weiss, S.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538544 (2005).CrossRefGoogle ScholarPubMed
7.Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435446 (2005).CrossRefGoogle Scholar
8.Pathak, S., Davidson, M.C., and Silva, G.A.: Characterization of the functional binding properties of antibody conjugated quantum dots. Nano Lett. 7, 18391845 (2007).CrossRefGoogle ScholarPubMed
9.Larson, D.R.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 14341436 (2003).CrossRefGoogle ScholarPubMed
10.Jaiswal, J.K., Goldman, E.R., Mattoussi, H., and Simon, S.M.: Use of quantum dots for live cell imaging. Nat. Methods 1, 7378 (2004).CrossRefGoogle ScholarPubMed
11.Tsoi, K.M., Dai, Q., Alman, B.A., and Chan, W.C.W.: Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc. Chem. Res. 46, 662671 (2013).CrossRefGoogle ScholarPubMed
12.Derfus, A.M., Chan, W.C.W., and Bhatia, S.N.: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 1118 (2004).CrossRefGoogle ScholarPubMed
13.Godt, J., Scheidig, F., Grosse-Siestrup, C., Esche, V., Brandenburg, P., Reich, A., and Groneberg, D.A.: The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 1, 16 (2006).CrossRefGoogle ScholarPubMed
14.Liu, J., Erogbogbo, F., Yong, K.-T., Ye, L., Liu, J., Hu, R., Chen, H., Hu, Y., Yang, Y., Yang, J., Roy, I., Karker, N.A., Swihart, M.T., and Prasad, P.N.: Assessing clinical prospects of silicon quantum dots: studies in mice and monkeys. ACS Nano 7, 73037310 (2013).CrossRefGoogle ScholarPubMed
15.Bhattacharjee, S., Rietjens, I.M.C.M., Singh, M.P., Atkins, T.M., Purkait, T.K., Xu, Z., Regli, S., Shukaliak, A., Clark, R.J., Mitchell, B.S., Alink, G.M., Marcelis, A.T.M., Fink, M.J., Veinot, J.G.C., Kauzlarich, S.M., and Zuilhof, H.: Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale 5, 48704883 (2013).CrossRefGoogle ScholarPubMed
16.Michl, J.: Introduction: silicon chemistry. Chem. Rev. 95, 1135 (1995).CrossRefGoogle Scholar
17.McVey, B.F.P. and Tilley, R.D.: Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc. Chem. Res. 47, 30453051 (2014).CrossRefGoogle ScholarPubMed
18.Chinnathambi, S., Chen, S., Ganesan, S., and Hanagata, N.: Silicon quantum dots for biological applications. Adv. Healthcare Mater. 3, 1029 (2014).CrossRefGoogle ScholarPubMed
19.Peng, F., Su, Y., Zhong, Y., Fan, C., Lee, S.T., and He, Y.: Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47, 612623 (2014).CrossRefGoogle ScholarPubMed
20.Wang, L., Reipa, V., and Blasic, J.: Silicon nanoparticles as a luminescent label to DNA. Bioconjug. Chem. 15, 409412 (2004).CrossRefGoogle Scholar
21.He, Y., Su, Y., Yang, X., Kang, Z., Xu, T., Zhang, R., Fan, C., and Lee, S.-T.: Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J. Am. Chem. Soc. 131, 44344438 (2009).CrossRefGoogle ScholarPubMed
22.Tu, C.-C., Awasthi, K., Chen, K.-P., Lin, C.-H., Hamada, M., Ohta, N., and Li, Y.: Time-gated imaging on live cancer cells using silicon quantum dot nanoparticles with long–lived fluorescence. ACS Photonics 4, 13061315 (2017).CrossRefGoogle Scholar
23.Robidillo, C.J.T., Aghajamali, M., Faramus, A., Sinelnikov, R., and Veinot, J.G.C.: Interfacing enzymes with silicon nanocrystals through the thiol-ene reaction. Nanoscale 10, 1870618719 (2018).CrossRefGoogle ScholarPubMed
24.Sugimoto, H., Fujii, M., Fukuda, Y., Imakita, K., and Akamatsu, K.: All-inorganic water-dispersible silicon quantum dots: highly efficient near-infrared luminescence in a wide pH range. Nanoscale 6, 122126 (2014).CrossRefGoogle Scholar
25.Sugimoto, H., Fujii, M., Imakita, K., Hayashi, S., and Akamatsu, K.: All-inorganic near-infrared luminescent colloidal silicon nanocrystals: high dispersibility in polar liquid by phosphorus and boron codoping. J. Phys. Chem. C 116, 17969–17674 (2012).CrossRefGoogle Scholar
26.Fujii, M., Sugimoto, H., and Imakita, K.: All-inorganic colloidal silicon nanocrystals—surface modification by boron and phosphorus co-doping. Nanotechnology 27, 262001 (2016).CrossRefGoogle ScholarPubMed
27.Fujii, M., Sugimoto, H., and Kano, S.: Silicon quantum dot with heavily boron and phosphorus codoped shell. Chem. Commun. 54, 43754389 (2018).CrossRefGoogle ScholarPubMed
28.Sugimoto, H., Yamamura, M., Sakiyama, M., and Fujii, M.: Visualizing a core-shell structure of heavily doped silicon quantum dots by electron microscopy using an atomically thin support film. Nanoscale 10, 73577362 (2018).CrossRefGoogle ScholarPubMed
29.Sugimoto, H., Fujii, M., Imakita, K., Hayashi, S., and Akamatsu, K.: Codoping n-and p-type impurities in colloidal silicon nanocrystals-controlling luminescence energy from below bulk band gap to visible range. J. Phys. Chem. C 117, 1185011857 (2013).CrossRefGoogle Scholar
30.Sugimoto, H., Yamamura, M., Fujii, R., and Fujii, M.: Donor–acceptor pair recombination in size-purified silicon quantum dots. Nano Lett. 18, 72827288 (2018).CrossRefGoogle ScholarPubMed
31.Inoue, A., Sugimoto, H., Yaku, H., and Fujii, M.: DNA assembly of silicon quantum dots/gold nanoparticle nanocomposites. RSC Adv. 6, 6393363939 (2016).CrossRefGoogle Scholar
32.Kanno, T., Kano, S., Sugimoto, H., Tada, Y., and Fujii, M.: Water-dispersible near-infrared luminescent silicon nanocrystals-immobilization on substrate. MRS Commun. 6, 429436 (2016).CrossRefGoogle Scholar
33.Liu, N., Prall, B.S., and Klimov, V.I.: Hybrid gold/silica/nanocrystal-quantum-dot superstructures: synthesis and analysis of semiconductor-metal interactions. J. Am. Chem. Soc. 128, 1536215363 (2006).CrossRefGoogle ScholarPubMed
34.Dasog, M., De Los Reyes, G.B., Titova, L.V., Hegmann, F.A., and Veinot, J.G.C.: Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups. ACS Nano 8, 96369648 (2014).CrossRefGoogle ScholarPubMed
35.Dasog, M., Yang, Z., Regli, S., Atkins, T.M., Faramus, A., Singh, M.P., Muthuswamy, E., Kauzlarich, S.M., Tilley, R.D., and Veinot, J.G.C.: Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals. ACS Nano 7, 26762685 (2013).CrossRefGoogle ScholarPubMed
36.Shiohara, A., Hanada, S., Prabakar, S., Fujioka, K., Lim, T.H., Yamamoto, K., Northcote, P.T., and Tilley, R.D.: Chemical reactions on surface molecules attached to silicon quantum dots. J. Am. Chem. Soc. 132, 248253 (2009).CrossRefGoogle Scholar
37.Cheng, X., Gondosiswanto, R., Ciampi, S., Reece, P.J., and Gooding, J.J.: One-pot synthesis of colloidal silicon quantum dots and surface functionalization via thiol-ene click chemistry. Chem. Commun. 48, 1187411876 (2012).CrossRefGoogle ScholarPubMed
38.Oliinyk, B.V., Lysenko, V., and Alekseev, S.: Determining the impact of hydrofluoric acid on surface states of as-prepared and chemically modified Si nanocrystals. RSC Adv. 6, 37233728 (2016).CrossRefGoogle Scholar
39.Warner, J.H., Rubinsztein-Dunlop, H., and Tilley, R.D.: Surface morphology dependent photoluminescence from colloidal silicon nanocrystals. J. Phys. Chem. B 109, 1906419067 (2005).CrossRefGoogle ScholarPubMed
40.Cheng, X., Lowe, S.B., Reece, P.J., and Gooding, J.J.: Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 43, 2680 (2014).CrossRefGoogle ScholarPubMed
41.Sugimoto, H., Hori, Y., Imura, Y., and Fujii, M.: Charge-transfer-induced photoluminescence enhancement in colloidal silicon quantum dots. J. Phys. Chem. C 121, 1196211967 (2017).CrossRefGoogle Scholar
42.Sapparapu, G., Planque, S., Mitsuda, Y., McLean, G., Nishiyama, Y., and Paul, S.: Constant domain-regulated antibody catalysis. J. Biol. Chem. 287, 3609636104 (2012).CrossRefGoogle ScholarPubMed
43.Rižner, T.L.: Teaching the structure of immunoglobulins by molecular visualization and SDS-PAGE analysis. Biochem. Mol. Biol. Educ. 42, 152159 (2014).CrossRefGoogle ScholarPubMed
44.He, Y., Zhong, Y., Peng, F., Wei, X., Su, Y., Lu, Y., Su, S., Gu, W., Liao, L., and Lee, S.T.: One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. J. Am. Chem. Soc. 133, 1419214195 (2011).CrossRefGoogle ScholarPubMed
45.Du, C., Du, C., Falini, G., and Fermani, S.: Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 307, 14501454 (2005).CrossRefGoogle ScholarPubMed
46.Nobbmann, U., Connah, M., Fish, B., Varley, P., Gee, C., Mulot, S., Chen, J., Zhou, L., Lu, Y., Sheng, F., Yi, J., and Harding, S.E.: Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies. Biotechnol. Genet. Eng. Rev. 24, 117128 (2007).CrossRefGoogle ScholarPubMed
47.Li, H., Shih, W.Y., and Shih, W.-H.: Highly photoluminescent and stable aqueous ZnS quantum dots. Ind. Eng. Chem. Res. 49, 579582 (2010).Google ScholarPubMed
48.Zhu, M., Chang, E., Sun, J., and Drezek, R.A.: Surface modification and functionalization of semiconductor quantum dots through reactive coating of silanes in toluene. J. Mater. Chem. 17, 800805 (2007).CrossRefGoogle Scholar
49.Chen, J., Liu, W., Mao, L.-H., Yin, Y.-J., Wang, C.-F., and Chen, S.: Synthesis of silica-based carbon dot/nanocrystal hybrids toward white LEDs. J. Mater. Sci. 49, 73917398 (2014).CrossRefGoogle Scholar
50.Park, S., Park, M., Han, P., and Lee, S.: The effect of pH-adjusted gold colloids on the formation of gold clusters over APTMS-coated silica cores. Bull. Korean Chem. Soc. 27, 13411345 (2006).Google Scholar
51.Kulkarni, S.A., Ogale, S.B., and Vijayamohanan, K.P.: Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J. Colloid Interface Sci. 318, 372379 (2008).CrossRefGoogle ScholarPubMed
52.Kunishima, M., Kawachi, C., Hioki, K., Terao, K., and Tani, S.: Formation of carboxamides by direct condensation of carboxylic acids and amines in alcohols using a new alcohol- and water-soluble condensing agent: DMT-MAM. Tetrahedron 57, 15511558 (2015).CrossRefGoogle Scholar
53.Kamra, T., Chaudhary, S., Xu, C., Johansson, N., Montelius, L., Schnadt, J., and Ye, L.: Covalent immobilization of molecularly imprinted polymer nanoparticles using an epoxy silane. J. Colloid Interface Sci. 445, 277284 (2015).CrossRefGoogle ScholarPubMed
54.Guo, X., Peng, J., Yang, J., Peng, F., Yu, H., and Wang, H.: Quantum dot-encoded beads for ultrasensitive detection quantum dot-encoded beads for ultrasensitive detection. Recent Pat. Nanotechnol. 3, 192202 (2009).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Yanagawa et al. supplementary material

Yanagawa et al. supplementary material 1

Download Yanagawa et al. supplementary material(PDF)
PDF 371 KB

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Antibody-conjugated near-infrared luminescent silicon quantum dots for biosensing
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Antibody-conjugated near-infrared luminescent silicon quantum dots for biosensing
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Antibody-conjugated near-infrared luminescent silicon quantum dots for biosensing
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *