Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T11:37:31.580Z Has data issue: false hasContentIssue false

Theranostic applications of organic nanoparticles for cancer treatment

Published online by Cambridge University Press:  13 March 2014

Ji Young Yhee
Affiliation:
Korea Institute of Science and Technology; yhee@kist.re.kr
Sohee Son
Affiliation:
Korea Institute of Science and Technology; shson@kist.re.kr
Namho Kim
Affiliation:
Korea Institute of Science and Technology; nkim@kist.re.kr
Kuiwon Choi
Affiliation:
Korea Institute of Science and Technology; choi@kist.re.kr
Ick Chan Kwon
Affiliation:
Korea Institute of Science and Technology; ikwon@kist.re.kr
Get access

Abstract

Research in nanotechnology-based molecular imaging and targeted drug delivery has resulted in a noticeable progress in cancer theranosis, the simultaneous application of cancer therapy and diagnosis. Theranostic nanoparticles (NPs) have been developed using diverse base materials, and organic materials are of major interest in the synthesis and preparation of these NPs. A variety of organic NPs have their own advantages, depending on the physiochemical and biological properties of the base materials. This article reviews recent developments in organic NPs, which are grouped into four major kinds of base materials: lipids, polysaccharides, peptides/proteins, and synthetic polymers. The advantageous properties of frequently used base materials and practical performance of the various organic NPs in vivo are discussed. These theranostic NPs offer new opportunities for effective cancer treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Janib, S.M., Moses, A.S., MacKay, J.A., Adv. Drug Deliv. Rev. 62, 1052 (2010).Google Scholar
Shchukin, D.G., Sukhorukov, G.B., Adv. Mater. 16, 671 (2004).Google Scholar
Yu, M.K., Park, J., Jon, S., Theranostics 2, 3 (2012).Google Scholar
Ahmed, N., Fessi, H., Elaissari, A., Drug Discov. Today 17, 928 (2012).CrossRefGoogle Scholar
Matsumura, Y., Maeda, H., Cancer Res. 46, 6387 (1986).Google Scholar
Yhee, J.Y., Son, S., Son, S., Joo, M.K., Kwon, I.C., in Cancer Targeted Drug Delivery, Bae, Y.H., Mrsny, R.J., Park, K., Eds. (Springer, New York, 2013), p. 621.Google Scholar
Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D.A., Torchilin, V.P., Jain, R.K., Cancer Res. 55, 3752 (1995).Google Scholar
Bae, Y.H., Park, K., J. Control. Release 153, 198 (2011).CrossRefGoogle Scholar
Bae, Y.H., J. Control. Release 133, 2 (2009).Google Scholar
Nayak, S., Lyon, L.A., Angew. Chem. Int. Ed. Engl. 44, 7686 (2005).Google Scholar
Sundar, S., Kundu, J., Kundu, S.C., Sci. Technol. Adv. Mater. 11, 014104 (2010).Google Scholar
Feracci, H., Gutierrez, B.S., Hempel, W., Gil, I.S., in Nanobiotechnology: Inorganic Nanoparticles vs. Organic Nanoparticles, de la Fuente, J.M., Grazu, V., Eds. (Elsevier, Great Britain, 2012).Google Scholar
Dufes, C., Muller, J.M., Couet, W., Olivier, J.C., Uchegbu, I.F., Schatzlein, A.G., Pharm. Res. 21, 101 (2004).Google Scholar
Choi, K.Y., Chung, H., Min, K.H., Yoon, H.Y., Kim, K., Park, J.H., Kwon, I.C., Jeong, S.Y., Biomaterials 31, 106 (2010).Google Scholar
Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R., Nat. Nanotechnol. 2, 751 (2007).Google Scholar
Estella-Hermoso de Mendoza, A., Campanero, M.A., Mollinedo, F., Blanco-Prieto, M.J., J. Biomed. Nanotechnol. 5, 323 (2009).Google Scholar
Altmayer, P., Grundmann, U., Ziehmer, M., Larsen, R., AINS 28, 415 (1993).Google Scholar
Muller, R.H., Mader, K., Gohla, S., Eur. J. Pharm. Biopharm. 50, 161 (2000).Google Scholar
Yang, S.C., Lu, L.F., Cai, Y., Zhu, J.B., Liang, B.W., Yang, C.Z., J. Control. Release 59, 299 (1999).CrossRefGoogle Scholar
Lim, S.J., Lee, M.K., Kim, C.K., J. Control. Release 100, 53 (2004).CrossRefGoogle Scholar
Rawat, M., Singh, D., Saraf, S., Saraf, S., Yakugaku Zasshi 128, 269 (2008).Google Scholar
Onyuksel, H., Sejourne, F., Suzuki, H., Rubinstein, I., Peptides 27, 2271 (2006).Google Scholar
Koo, O.M., Rubinstein, I., Onyuksel, H., Nanomedicine 1, 193 (2005).Google Scholar
Barenholz, Y., J. Control. Release 160, 117 (2012).CrossRefGoogle Scholar
Malam, Y., Loizidou, M., Seifalian, A.M., Trends Pharmacol. Sci. 30, 592 (2009).Google Scholar
Sharma, A., Mayhew, E., Bolcsak, L., Cavanaugh, C., Harmon, P., Janoff, A., Bernacki, R.J., Int. J. Cancer 71, 103 (1997).Google Scholar
Torchilin, V.P., Nat. Rev. Drug Discov. 4, 145 (2005).Google Scholar
Constantinides, P.P., Chaubal, M.V., Shorr, R., Adv. Drug Deliv. Rev. 60, 757 (2008).Google Scholar
Samad, A., Sultana, Y., Aqil, M., Curr. Drug Deliv. 4, 297 (2007).Google Scholar
Martins, S., Sarmento, B., Ferreira, D.C., Souto, E.B., Int. J. Nanomed. 2, 595 (2007).Google Scholar
Torchilin, V.P., Omel’yanenko, V.G., Klibanov, A.L., Mikhailov, A.I., Gol’danskii, V.I., Smirnov, V.N., Biochim. Biophys. Acta 602, 511 (1980).Google Scholar
Lee, S., Lee, S.Y., Park, S., Ryu, J.H., Na, J.H., Koo, H., Lee, K.E., Jeon, H., Kwon, I.C., Kim, K., Jeong, S.Y., Macromol. Biosci. 12, 849 (2012).Google Scholar
Zara, G.P., Cavalli, R., Fundaro, A., Bargoni, A., Caputo, O., Gasco, M.R., Pharmacol. Res. 40, 281 (1999).CrossRefGoogle Scholar
Paliwal, R., Rai, S., Vaidya, B., Khatri, K., Goyal, A.K., Mishra, N., Mehta, A., Vyas, S.P., Nanomedicine 5, 184 (2009).Google Scholar
Podlogar, F., Gasperlin, M., Tomsic, M., Jamnik, A., Rogac, M.B., Int. J. Pharm. 276, 115 (2004).Google Scholar
Martin, B., Sainlos, M., Aissaoui, A., Oudrhiri, N., Hauchecorne, M., Vigneron, J.P., Lehn, J.M., Lehn, P., Curr. Pharm. Des. 11, 375 (2005).Google Scholar
Kostarelos, K., Miller, A.D., Chem. Soc. Rev. 34, 970 (2005).CrossRefGoogle Scholar
Kwon, S.M., Nam, H.Y., Nam, T., Park, K., Lee, S., Kim, K., Kwon, I.C., Kim, J., Kang, D., Park, J.H., Jeong, S.Y., J. Control. Release 128, 89 (2008).Google Scholar
Scheule, R.K., St. George, J.A., Bagley, R.G., Marshall, J., Kaplan, J.M., Akita, G.Y., Wang, K.X., Lee, E.R., Harris, D.J., Jiang, C., Yew, N.S., Smith, A.E., Cheng, S.H., Hum. Gene Ther. 8, 689 (1997).CrossRefGoogle Scholar
Felgner, J.H., Kumar, R., Sridhar, C.N., Wheeler, C.J., Tsai, Y.J., Border, R., Ramsey, P., Martin, M., Felgner, P.L., J. Biol. Chem. 269, 2550 (1994).Google Scholar
Gupta, M., Agrawal, G.P., Vyas, S.P., Curr. Mol. Med. 13, 179 (2013).Google Scholar
Couvreur, P., Kante, B., Roland, M., Speiser, P., J. Pharm. Sci. 68, 1521 (1979).CrossRefGoogle Scholar
Dang, J.M., Leong, K.W., Adv. Drug Deliv. Rev. 58, 487 (2006).CrossRefGoogle Scholar
Yhee, J.Y., Koo, H., Lee, D.E., Choi, K., Kwon, I.C., Kim, K., Adv. Polym. Sci. 243, 139 (2011).Google Scholar
Liu, Z.H., Jiao, Y.P., Wang, Y.F., Zhou, C.R., Zhang, Z.Y., Adv. Drug Deliv. Rev. 60, 1650 (2008).Google Scholar
Sahu, S.K., Mallick, S.K., Santra, S., Maiti, T.K., Ghosh, S.K., Pramanik, P., J. Mater. Sci. Mater. Med. 21, 1587 (2010).Google Scholar
Guan, M., Zhou, Y., Zhu, Q.L., Liu, Y., Bei, Y.Y., Zhang, X.N., Zhang, Q., Nanomed. Nanotechnol. 8, 1172 (2012).Google Scholar
Kim, K., Kim, J.H., Park, H., Kim, Y.S., Park, K., Nam, H., Lee, S., Park, J.H., Park, R.W., Kim, I.S., Choi, K., Kim, S.Y., Park, K., Kwon, I.C., J. Control. Release 146, 219 (2010).Google Scholar
Mao, H.Q., Roy, K., Troung-Le, V.L., Janes, K.A., Lin, K.Y., Wang, Y., August, J.T., Leong, K.W., J. Control. Release 70, 399 (2001).Google Scholar
Park, K., Kim, J.H., Nam, Y.S., Lee, S., Nam, H.Y., Kim, K., Park, J.H., Kim, I.S., Choi, K., Kim, S.Y., Kwon, I.C., J. Control. Release 122, 305 (2007).CrossRefGoogle Scholar
Kwon, S., Park, J.H., Chung, H., Kwon, I.C., Jeong, S.Y., Kim, I.S., Langmuir 19, 10188 (2003).Google Scholar
Na, J.H., Lee, S.Y., Lee, S., Koo, H., Min, K.H., Jeong, S.Y., Yuk, S.H., Kim, K., Kwon, I.C., J. Control. Release 163, 2 (2012).Google Scholar
Na, J.H., Koo, H., Lee, S., Min, K.H., Park, K., Yoo, H., Lee, S.H., Park, J.H., Kwon, I.C., Jeong, S.Y., Kim, K., Biomaterials 32, 5252 (2011).Google Scholar
Min, K.H., Park, K., Kim, Y.S., Bae, S.M., Lee, S., Jo, H.G., Park, R.W., Kim, I.S., Jeong, S.Y., Kim, K., Kwon, I.C., J. Control. Release 127, 208 (2008).CrossRefGoogle Scholar
Hwang, H.Y., Kim, I.S., Kwon, I.C., Kim, Y.H., J. Control. Release 128, 23 (2008).CrossRefGoogle Scholar
Choi, K.Y., Min, K.H., Na, J.H., Choi, K., Kim, K., Park, J.H., Kwon, I.C., Jeong, S.Y., J. Mater. Chem. 19, 4102 (2009).Google Scholar
Platt, V.M., Szoka, F.C., Mol. Pharm. 5, 474 (2008).Google Scholar
Lee, H., Lee, K., Park, T.G., Bioconjug. Chem. 19, 1319 (2008).Google Scholar
Choi, K.Y., Yoon, H.Y., Kim, J.H., Bae, S.M., Park, R.W., Kang, Y.M., Kim, I.S., Kwon, I.C., Choi, K., Jeong, S.Y., Kim, K., Park, J.H., ACS Nano 5, 8591 (2011).Google Scholar
Yoon, H.Y., Koo, H., Choi, K.Y., Lee, S.J., Kim, K., Kwon, I.C., Leary, J.F., Park, K., Yuk, S.H., Park, J.H., Choi, K., Biomaterials 33, 3980 (2012).Google Scholar
Min, H.S., Son, S., Lee, T.W., Koo, H., Yoon, H.Y., Na, J.H., Choi, Y., Park, J.H., Lee, J., Han, M.H., Park, R.W., Kim, I.S., Jeong, S.Y., Rhee, K., Kim, S.H., Kwon, I.C., Kim, K., Adv. Funct. Mater. 23 (44), 5518 (2013).Google Scholar
Choi, J.H., Jang, J.Y., Joung, Y.K., Kwon, M.H., Park, K.D., J. Control. Release 147, 420 (2010).Google Scholar
Li, Y.L., Zhu, L., Liu, Z.Z., Cheng, R., Meng, F.H., Cui, J.H., Ji, S.J., Zhong, Z.Y., Angew. Chem. Int. Ed. Engl. 48, 9914 (2009).Google Scholar
Aynie, I., Vauthier, C., Chacun, H., Fattal, E., Couvreur, P., Antisense Nucleic Acid. Drug Dev. 9, 301 (1999).Google Scholar
Zahoor, A., Sharma, S., Khuller, G.K., Int. J. Antimicrob. Agents 26, 298 (2005).Google Scholar
Damge, C., Reis, C.P., Maincent, P., Expert Opin. Drug Deliv. 5, 45 (2008).Google Scholar
Na, K., Kim, S., Park, K., Kim, K., Woo, D.G., Kwon, I.C., Chung, H.M., Park, K.H., J. Am. Chem. Soc. 129, 5788 (2007).Google Scholar
Byrne, J.D., Betancourt, T., Brannon-Peppas, L., Adv. Drug Deliv. Rev. 60, 1615 (2008).Google Scholar
Harisinghani, M.G., Barentsz, J., Hahn, P.F., Deserno, W.M., Tabatabaei, S., van de Kaa, C.H., de la Rosette, J., Weissleder, R., N. Engl. J. Med. 348, 2491 (2003).Google Scholar
Park, J.H., von Maltzahn, G., Zhang, L.L., Schwartz, M.P., Ruoslahti, E., Bhatia, S.N., Sailor, M.J., Adv. Mater. 20, 1630 (2008).CrossRefGoogle Scholar
Elzoghby, A.O., Samy, W.M., Elgindy, N.A., J. Control. Release 157, 168 (2012).Google Scholar
Becker, A., Riefke, B., Ebert, B., Sukowski, U., Rinneberg, H., Semmler, W., Licha, K., Photochem. Photobiol. 72, 234 (2000).Google Scholar
Hawkins, M.J., Soon-Shiong, P., Desai, N., Adv. Drug Deliv. Rev. 60, 876 (2008).CrossRefGoogle Scholar
Miele, E., Spinelli, G.P., Miele, E., Tomao, F., Tomao, S., Int. J. Nanomed. 4, 99 (2009).Google Scholar
Hong, M.H., Zhu, S.J., Jiang, Y.Y., Tang, G.T., Sun, C., Fang, C., Shi, B., Pei, Y.Y., J. Control. Release 141, 22 (2010).Google Scholar
Gatter, K.C., Brown, G., Trowbridge, I.S., Woolston, R.E., Mason, D.Y., J. Clin. Pathol. 36, 539 (1983).Google Scholar
Kommareddy, S., Amiji, M., Bioconjug. Chem. 16, 1423 (2005).CrossRefGoogle Scholar
Lee, S.J., Yhee, J.Y., Kim, S.H., Kwon, I.C., Kim, K., J. Control. Release 172, 358 (2013).Google Scholar
Yhee, J.Y., Lee, S.J., Lee, S., Song, S., Min, H.S., Kang, S.W., Son, S., Jeong, S.Y., Kim, S.H., Kim, K., Bioconjug. Chem. 24 (11), 1850 (2013).CrossRefGoogle Scholar
Son, S., Song, S., Lee, S.J., Min, S., Kim, S.A., Yhee, J.Y., Huh, M.S., Kwon, I. Chan, Jeong, S.Y., Byun, Y., Kim, S.H., Kim, K., Biomaterials 34, 9475 (2013).Google Scholar
Lee, S.J., Son, S., Yhee, J.Y., Choi, K., Kwon, I.C., Kim, S.H., Kim, K., Biotechnol. Adv. 31, 491 (2013).Google Scholar
Cheng, R., Feng, F., Meng, F.H., Deng, C., Feijen, J., Zhong, Z.Y., J. Control. Release 152, 2 (2011).CrossRefGoogle Scholar
Knop, K., Hoogenboom, R., Fischer, D., Schubert, U.S., Angew. Chem. Int. Ed. Engl. 49, 6288 (2010).Google Scholar
Ledet, M.T. G, Nanomedicine, U.S. Pharm. 37, 7 (2012).Google Scholar
Veronese, F.M., Pasut, G., Drug Discov. Today 10, 1451 (2005).Google Scholar
Zacchigna, M., Cateni, F., Drioli, S., Bonora, G.M., Polymers 3, 1076 (2011).Google Scholar
Yokoyama, M., Miyauchi, M., Yamada, N., Okano, T., Sakurai, Y., Kataoka, K., Inoue, S., J. Control. Release 11, 269 (1990).Google Scholar
Yoo, H.S., Park, T.G., J. Control. Release 70, 63 (2001).Google Scholar
Pasut, G., Veronese, F.M., Prog. Polym. Sci. 32, 933 (2007).CrossRefGoogle Scholar
Chan, J.M., Valencia, P.M., Zhang, L., Langer, R., Farokhzad, O.C., Methods Mol. Biol. 624, 163 (2010).Google Scholar
Dinarvand, R., Sepehri, N., Manoochehri, S., Rouhani, H., Atyabi, F., Int. J. Nanomed. 6, 877 (2011).Google Scholar
Jain, R.A., Biomaterials 21, 2475 (2000).Google Scholar
Park, T.G., J. Control. Release 30, 161 (1994).Google Scholar
Kumari, A., Yadav, S.K., Yadav, S.C., Colloids Surf. B 75, 1 (2010).Google Scholar
Owens, D.E., Peppas, N.A., Int. J. Pharm. 307, 93 (2006).Google Scholar
Farokhzad, O.C., Cheng, J.J., Teply, B.A., Sherifi, I., Jon, S., Kantoff, P.W., Richie, J.P., Langer, R., Proc. Natl. Acad. Sci. U.S.A. 103, 6315 (2006).CrossRefGoogle Scholar
Locatelli, E., Franchini, M.C., J. Nanopart. Res. 14, 1316 (2012).Google Scholar
Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., Behr, J.P., Proc. Natl. Acad. Sci. U.S.A. 92, 7297 (1995).Google Scholar
Godbey, W.T., Wu, K.K., Mikos, A.G., J. Control. Release 60, 149 (1999).Google Scholar
Mahato, M., Kumar, P., Sharma, A.K., Mol. Biosyst. 9, 780 (2013).Google Scholar
Ogris, M., Walker, G., Blessing, T., Kircheis, R., Wolschek, M., Wagner, E., J. Control. Release 91, 173 (2003).Google Scholar
Nguyen, H.K., Lemieux, P., Vinogradov, S.V., Gebhart, C.L., Guerin, N., Paradis, G., Bronich, T.K., Alakhov, V.Y., Kabanov, A.V., Gene Ther. 7, 126 (2000).Google Scholar
Zhao, X., Li, Z., Pan, H., Liu, W., Lv, M., Leung, F., Lu, W.W., Acta Biomater. 9, 6694 (2013).Google Scholar
Li, C., Wallace, S., Adv. Drug Deliv. Rev. 60, 886 (2008).Google Scholar
Duncan, R., Nat. Rev. Cancer 6, 688 (2006).CrossRefGoogle Scholar
Herold, D.A., Keil, K., Bruns, D.E., Biochem. Pharmacol. 38, 73 (1989).Google Scholar
Zhang, X.Y., Granick, S., Macromolecules 35, 4017 (2002).Google Scholar
Chawla, J.S., Amiji, M.M., Int. J. Pharm. 249, 127 (2002).Google Scholar
Rapoport, N., Prog. Polym. Sci. 32, 962 (2007).Google Scholar
Xie, Y.M., Bagby, T.R., Cohen, M.S., Forrest, M.L., Expert Opin. Drug Deliv. 6, 785 (2009).Google Scholar
Key, J., Cooper, C., Kim, A.Y., Dhawan, D., Knapp, D.W., Kim, K., Park, J.H., Choi, K., Kwon, I.C., Park, K., Leary, J.F., J. Control. Release 163, 249 (2012).Google Scholar
Li, J.L., Wang, L., Liu, X.Y., Zhang, Z.P., Guo, H.C., Liu, W.M., Tang, S.H., Cancer Lett. 274, 319 (2009).Google Scholar
Jain, S., Hirst, D.G., O’Sullivan, J.M., Br. J. Radiol. 85, 101 (2012).Google Scholar
Visaria, R.K., Griffin, R.J., Williams, B.W., Ebbini, E.S., Paciotti, G.F., Song, C.W., Bischof, J.C., Mol. Cancer Ther. 5, 1014 (2006).Google Scholar
Ryu, J.H., Kim, S.A., Koo, H., Yhee, J.Y., Lee, A., Na, J.H., Youn, I., Choi, K., Kwon, I.C., Kim, B.S., Kim, K., J. Mater. Chem. 21, 17631 (2011).Google Scholar