Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T08:30:57.412Z Has data issue: false hasContentIssue false

Stretchable organic integrated circuits for large-area electronic skin surfaces

Published online by Cambridge University Press:  12 March 2012

Tsuyoshi Sekitani
Affiliation:
Department of Electrical and Electronic Engineering, University of Tokyo; sekitani@ee.t.u-tokyo.ac.jp
Takao Someya
Affiliation:
Department of Electrical and Electronic Engineering, University of Tokyo; someya@ee.t.u-tokyo.ac.jp
Get access

Abstract

Recent advances in stretchable electronics have seen the emergence of new technologies, and intensive efforts are being dedicated to embed some form of “intelligence” in various types of surfaces. However, the primary challenge in the field of stretchable electronics has been the development of stretchable or elastic electrical wiring that is both highly conductive and highly stretchable. Another challenge has been the development of manufacturing processes for integrating active device components as non-stretchable regions with electrical wiring as stretchable regions; the rigid/stretchable interfaces of these components require both high conductivity and high mechanical stability. In this article, we review the fabrication of carbon-nanotube-based elastic conductors with high electrical conductivity and mechanical stretchability as a representative example of stretchable organic integrated circuit electronics. Furthermore, we demonstrate the development of rubber-like stretchable integrated circuits for large-area human/machine interfaces. The fabrication process described in this article exploits the advantages of integrating a variety of electrical functional materials, ranging from rigid and semi-rigid elastomers to gels, with electronic circuits. The stretchable devices can be spread over a wide range of surfaces, including free surface curvatures and movable parts, thereby significantly increasing the scope of application of stretchable electrical and electronic circuits.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Garnier, F., Hajlaoui, R., Yassar, A., Srivastava, P., Science 265, 1684 (1994).CrossRefGoogle Scholar
2.Rogers, J.A., Science 291, 1502 (2001).CrossRefGoogle Scholar
3.Dimitrakopoulos, C.D., Malenfant, P.R.L., Adv. Mater. 14, 99 (2002).3.0.CO;2-9>CrossRefGoogle Scholar
4.Service, R.F., Science 304, 675 (2004).CrossRefGoogle Scholar
5.Katz, H.E., Chem. Mater. 16, 4748 (2004).CrossRefGoogle Scholar
6.Hamedi, M., Forchheimer, R., Inganäs, O., Nat. Mater. 6, 357 (2007).CrossRefGoogle Scholar
7.Mitzi, D.B., Kosbar, L.L., Murray, C.E., Copel, M., Afzali, A., Nature 428, 299 (2004).CrossRefGoogle Scholar
8.Cao, Q., Kim, H.-S., Pimparkar, N., Kulkarni, J.P., Wang, C., Shim, M., Roy, K., Alam, M.A., Rogers, J.A., Nature 454, 495 (2008).CrossRefGoogle Scholar
9.Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J., Drzaic, P., Proc. Natl. Acad. Sci. U.S.A. 98, 4835 (2001).CrossRefGoogle Scholar
10.Forrest, S.F., Nature 428, 911 (2004).CrossRefGoogle Scholar
11.Gelinck, G.H., Huitema, H.E.A., van Veenendaal, E., Cantatore, E., Schrijnemakers, L., van der Putten, J.B.P.H., Geuns, T.C.T., Beenhakkers, M., Giesbers, J.B., Huisman, B.-H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., van Rens, B.J.E., de Leeuw, Dago M., Nat. Mater. 3, 106 (2004).CrossRefGoogle Scholar
12.Lee, T.W., Zaumseil, J., Bao, Z., Hsu, J.W.P., Rogers, J.A., Proc. Natl. Acad. Sci. U.S.A. 101, 429 (2004).CrossRefGoogle Scholar
13.Ju, S., Li, J., Liu, J., Chen, P.-C., Ha, Y.-g., Ishikawa, F., Chang, H., Zhou, C., Facchetti, A., Janes, D.B., Marks, T.J., Nano Lett. 8, 997 (2008).CrossRefGoogle Scholar
14.Klauk, H., Nature 451, 533 (2008).CrossRefGoogle Scholar
15.Zhou, L., Wanga, A., Wu, S.-C., Sun, J., Park, S., Jackson, T.N., Appl. Phys. Lett. 88, 083502 (2006).CrossRefGoogle Scholar
16.Andersson, P., Nilsson, D., Svensson, P.-O., Chen, M., Malmström, A., Remonen, T., Kugler, T., Berggren, M., Adv. Mater. 14, 1460 (2002).3.0.CO;2-S>CrossRefGoogle Scholar
17.Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., Sakurai, T., Proc. Natl. Acad. Sci. U.S.A. 101, 9966 (2004).CrossRefGoogle Scholar
18.Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H., Sakurai, T., Proc. Natl. Acad. Sci. U.S.A. 102, 12321 (2005).CrossRefGoogle Scholar
19.Someya, T., Kato, Y., Iba, S., Noguchi, Y., Sekitani, T., Kawaguchi, H., Sakurai, T., IEEE Trans. Electron. Devices 52, 2502 (2005).CrossRefGoogle Scholar
20.Kato, Y., Sekitani, T., Takamiya, M., Doi, M., Asaka, K., Sakurai, T., Someya, T., IEEE Trans. Electron. Devices 54, 202 (2007).CrossRefGoogle Scholar
21.Sekitani, T., Takamiya, M., Noguchi, Y., Nakano, S., Kato, Y., Sakurai, T., Someya, T., Nat. Mater. 6, 413 (2007).CrossRefGoogle Scholar
22.Sekitani, T., Zaitsu, K., Noguchi, Y., Ishibe, K., Takamiya, M., Sakurai, T., Someya, T., IEEE Trans. Electron. Devices 56, 1027 (2009).CrossRefGoogle Scholar
23.Siegel, A.C., Bruzewicz, D.A., Weibel, D.B., Whitesides, G.M., Adv. Mater. 19, 727 (2007).CrossRefGoogle Scholar
24.Khang, D.Y., Jiang, H.Q., Huang, Y., Rogers, J.A., Science 311, 208 (2006).CrossRefGoogle Scholar
25.Kim, D.-H., Ahn, J.-H., Choi, W.M., Kim, H.-S., Kim, T.-H., Song, J., Huang, Y.Y., Liu, Z., Lu, C., Rogers, J.A., Science 20, 507 (2008).CrossRefGoogle Scholar
26.Kim, D.-H., Xiao, J., Song, J., Huang, Y., Rogers, J.A., Adv. Mater. 22, 2108 (2010).CrossRefGoogle Scholar
27.Lacour, S.P., Wagner, S., Huang, Z.Y., Suo, Z., Appl. Phys. Lett. 82, 2404 (2003).CrossRefGoogle Scholar
28.Lacour, S.P., Jones, J., Wagner, S., Li, T., Suo, Z.G., Proc. IEEE 93, 1459 (2005).CrossRefGoogle Scholar
29.Brosteaux, D., Axisa, F., Gonzalez, M., Vanfleteren, J., IEEE Electron Device Lett. 28, 552 (2007).CrossRefGoogle Scholar
30.Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H., Nature 457, 706 (2009).CrossRefGoogle Scholar
31.Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., Someya, T., Science 321, 1468 (2008).CrossRefGoogle Scholar
32.Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., Someya, T., Nat. Mater. 8, 494 (2009).CrossRefGoogle Scholar
33.Sekitani, T., Someya, T., Adv. Mater. 22, 2228 (2010).CrossRefGoogle Scholar
34.Iijima, S., Ichihashi, T., Nature 363, 603 (1993).CrossRefGoogle Scholar
35.Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S., Science 306, 1362 (2004).CrossRefGoogle Scholar
36.Noguchi, Y., Sekitani, T., Someya, T., Appl. Phys. Lett. 91, 133502 (2007).CrossRefGoogle Scholar
37.Noguchi, Y., Sekitani, T., Someya, T., Appl. Phys. Lett. 89, 253507 (2006).CrossRefGoogle Scholar
38.Fukuda, K., Sekitani, T., Yokota, T., Kuribara, K., Huang, T.-C., Sakurai, T., Zschieschang, U., Klauk, H., Ikeda, Ma., Kuwabara, H., Yamamoto, T., Takimiya, K., Cheng, K.-T., Someya, T., IEEE Electron Device Letters 32, 1448 (2011).CrossRefGoogle Scholar
39.Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai, R., Hasegawa, T., Nature 475, 364 (2011).CrossRefGoogle Scholar
40.Ishida, K., Masunaga, N., Zhou, Z., Yasufuku, T., Sekitani, T., Zschieschang, U., Klauk, H., Takamiya, M., Someya, T., Sakurai, T., IEEE J. Solid-State Circuits 45, 249 (2010).CrossRefGoogle Scholar
41.Ishida, K., Masunaga, N., Zhou, Z., Yasufuku, T., Sekitani, T., Zschieschang, U., Klauk, H., Takamiya, M., Someya, T., Sakurai, T., IEEE International Solid-State Circuits Conference, San Francisco, USA, pp. 472–473, Feb. 2009.Google Scholar
42.Klauk, H., Zschieschang, U., Pflaum, J., Halik, M., Nature 445, 745 (2007).CrossRefGoogle Scholar
43.Katz, H.E., Lovinger, A.J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.Y., Dodabalapur, A., Nature 404, 478 (2000).CrossRefGoogle Scholar