Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T16:25:57.881Z Has data issue: false hasContentIssue false

Self-Assembled Patterning of Ultrathin Silicides by Local Oxidation

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Most microfabrication techniques employ masks to transfer the desired microstructure onto a wafer using ultraviolet light, x-rays, electrons, or ions for the projection of the structures. Generally, photoresist processing and etching follow to form the final structures. In all cases, the facilities necessary to perform these processes grow increasingly more complex as the feature size of the structures diminishes, and these processes face their practical or economic limits at dimensions of about 50 nm. Thus alternative approaches are under investigation, including different self-assembly techniques. They require no costly facilities and no masks with nanometer structures, and they promise high throughput, since the patterning is directly achieved by a physical or chemical process. Self-assembled monolayers of long-chain organic molecules are the most widely studied examples, where chemisorption and spontaneous self-ordering of the molecules are observed on appropriate substrates. Another interesting example is island-ordering, laterally or in a vertical direction, during epitaxial growth. The lattice-mismatched islands tend to nucleate preferentially on top of each other when separated by a thin spacer layer, due to the associated strain field. Another approach is the use of specific stressor layers on the surface to obtain alignment of buried precipitates along the stressor lines. However, the main challenges of all self-assembly techniques are precise control of the dimensions of the structures and reproducibility.

Type
Novel Methods of Nanoscale Wire Formation
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Xia, Y. and Whitesides, G.M., Angew. Chem. Int. Ed. 37 (1998) p. 550.3.0.CO;2-G>CrossRefGoogle Scholar
2.Rahmati, B., Jäger, W., Trinkaus, H., Loo, R., Vescan, L., and Lüth, H., Appl. Phys. A 62 (1996) p. 575, L. Vescan, J. Cryst. Growth 194 (1998) p. 173.CrossRefGoogle Scholar
3.Tersoff, J., Teichert, C., and Lagally, M.G., Phys. Rev. Lett. 76 (1996) p. 1675.CrossRefGoogle Scholar
4.Kiehl, R.A., Yamaguchi, M., Ueda, O., Horiguchi, N., and Yokoyama, N., Appl. Phys. Lett. 68 (4) (1996) p. 478.CrossRefGoogle Scholar
5.Mantl, S., Dolle, M., Mesters, St., Fichtner, P.P.P., and Bay, H.L., Appl. Phys. Lett. 67 (1995) p. 3459.CrossRefGoogle Scholar
6.Zhao, Q.T., Klinkhammer, F., Dolle, M., Kappius, L., and Mantl, S., Appl. Phys. Lett. 74 (3) (1999) p. 454.CrossRefGoogle Scholar
7.Tucker, J.R., Wang, C., and Shen, T.-C., Nanotechnology 7 (1996) p. 275.CrossRefGoogle Scholar
8.Wang, C., Snyder, J.P., and Tucker, J.R., Appl. Phys. Lett. 74 (8) (1999) p. 1174.CrossRefGoogle Scholar
9.Lenssen, D., and Mantl, S., Appl. Phys. Lett. 71 (24) (1997) p. 3540; S. Mantl, Mat. Sci. Rep. 8 (1992) p. 1.CrossRefGoogle Scholar
10.Bischoff, L., Teichert, J., Hesse, E., Panknin, D., and Skorupa, W., in Proc. 9th Int. Conf. on Ion Beam Modification of Materials, edited by Williams, J.S., Elliman, R.G., and Ridgway, M.C. (Elsevier, Amsterdam, 1996) p. 933.CrossRefGoogle Scholar
11.Maex, K., Mat. Sci. Eng. R 11 (1993) p. 53.CrossRefGoogle Scholar
12.Pellegrini, P., (Mat. Res. Soc. Proc. 320, Pittsburgh, 1994) p. 27.CrossRefGoogle Scholar
13.Tung, R.T., in Silicon-Molecular Beam Epitaxy, edited by Kasper, E. and Bean, J.C. (CRC Press, Boca Raton, FL, 1988) p. 13.Google Scholar
14.Mantl, S. and Bay, H.L., Appl. Phys. Lett. 61 (1992) p. 267.CrossRefGoogle Scholar
15.Mantl, S., J. Phys. D: Appl. Phys. 31 (1998) p. 1.CrossRefGoogle Scholar
16.Jiang, H., Peterson, C.S., and Nicolet, M.-A., Thin Solid Films 140 (1986) p. 115.CrossRefGoogle Scholar
17.Deal, B.E., and Grove, A.S., J. Appl. Phys. 36 (1965) p. 3770.CrossRefGoogle Scholar
18.Wolf, S. and Tauber, R.N., Silicon Processing for the VLSI Era 1 (Lattice Press, Sunset Beach, CA, 1989).Google Scholar
19.Mantl, S., Kappius, L., Antons, A., Löken, M., Klinkhammer, F., Dolle, M., Zhao, Q.T., Mesters, S., Buchal, Ch., Bay, H.L., Kabius, B., Trinkaus, H., and Heinig, K.H., in Advanced Interconnects and Contact Materials and Processes for Future ICs, (Mat. Res. Soc. Symp. Proc. 514, Warrendale, PA, 1998) in press.Google Scholar
20.Antons, A., Heinig, K.H., Trinkaus, H., Klinkhammer, F., Mesters, S., and Mantl, S. (unpublished).Google Scholar
21.Reiss, S. and Heinig, K.H., Nuclear Instr. Methods Phys. Res., Sect. B 84 (1994) p. 229; S. Reiss and K.H. Heinig, Nuclear Instr. Methods Phys. Res., Sect. B 102 (1995) p. 256.CrossRefGoogle Scholar
22.Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K., Nature 392 (1998) p. 768.CrossRefGoogle Scholar
23.Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., Urban, K., Ultramicroscopy 74 (1998) p. 53.CrossRefGoogle Scholar
24.Tucker, J.R., Wang, C., and Carney, P.S., Appl. Phys. Lett. 65 (1994) p. 618.CrossRefGoogle Scholar
25.Huang, C.-K., Zhang, W.E., and Yang, C.H., IEEE Trans. Elcctr. Dev. 45 (1998) p. 842.CrossRefGoogle Scholar