Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T17:58:33.368Z Has data issue: false hasContentIssue false

Rheology and Ultrasonic Properties of Metallic Glass-Forming Liquids: A Potential Energy Landscape Perspective

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

In the potential energy landscape theory of liquids, the energetic configurational landscape of a liquid is modeled using a potential energy function comprising a population of stable potential energy minima called inherent states, which represent the stable atomic configurations of the liquid. These configurations are separated by saddle points that represent barriers for configurational hopping between the inherent states. In this article, we survey recent progress in understanding metallic glass-forming liquids from a potential energy landscape perspective. Flow is modeled as activated hopping between inherent states across energy barriers that are assumed to be, on average, sinusoidal. This treatment gives rise to a functional relation between viscosity and isoconfigurational shear modulus, leading to rheological laws describing the Newtonian and non-Newtonian viscosity of metallic glass-forming liquids over a broad range of rheological behavior. High-frequency ultrasonic data gathered within the supercooled-liquid region are shown to correlate well with rheological data, thus confirming the validity of the proposed treatment. Variations in shear modulus induced either by thermal excitation or mechanical deformation can be correlated to variations in the measured stored enthalpy or equivalently to the configurational potential energy of the liquid. This shows that the elastic and rheological properties of a liquid or glass are uniquely related to the average potential energy of the occupied inherent states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Spaepen, F., Acta Metall. 25, 407 (1977).CrossRefGoogle Scholar
2.Argon, A.S., Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
3.Flores, K.M., Suh, D., Dauskardt, R.H., Asoka-Kumar, P., Sterne, P.A., Howell, R.H., J. Mater. Res. 17, 1153 (2002).CrossRefGoogle Scholar
4.Hajlaoui, K., Benameur, T., Vaughan, G., Yavari, A.R., Scripta Mater. 51, 843 (2004).CrossRefGoogle Scholar
5.Johnson, W.L., Samwer, K., Phys. Rev. Lett. 95, 195501 (2005).CrossRefGoogle Scholar
6.Lind, M.L., Duan, G., Johnson, W.L., Phys. Rev. Lett. 97, 015501 (2006).CrossRefGoogle Scholar
7.Demetriou, M.D., Harmon, J.S., Tao, M., Duan, G., Samwer, K., Johnson, W.L., Phys. Rev. Lett. 97, 065502 (2006).CrossRefGoogle Scholar
8.Stillinger, F.H., Weber, T.A., Science 267, 1935 (1995).CrossRefGoogle Scholar
9.Debenedetti, P.G., Stillinger, F.H., Nature 410, 259 (2001).CrossRefGoogle Scholar
10.Frenkel, J., Z. Phys. 37, 572 (1926).CrossRefGoogle Scholar
11.Busch, R., Johnson, W.L., Appl. Phys. Lett. 72, 2695 (1998).CrossRefGoogle Scholar
12.Harmon, J.S., Demetriou, M.D., Johnson, W.L., Appl. Phys. Lett. 90, 131912 (2007).CrossRefGoogle Scholar
13.Harmon, J.S., Demetriou, M.D., Johnson, W.L., Appl. Phys. Lett. 90, 171923 (2007).CrossRefGoogle Scholar
14.Angell, C.A., J. Non-Cryst. Solids 73, 1 (1985).CrossRefGoogle Scholar
15.Vogel, H., Z. Phys. 22, 645 (1921); G.S. Fulcher, Am. Ceram. Soc. Bull. 8, 339 (1925); G. Tammann, G. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926).Google Scholar
16.Cohen, M.H., Grest, G.S., Phys. Rev. B: Condens. Matter 20, 1077 (1979).CrossRefGoogle Scholar
17.Harmon, J.S., PhD thesis, California Institute of Technology (2007).Google Scholar
18.Fan, G.H., Fecht, H.-J., Lavernia, E.J., Appl. Phys. Lett. 84, 487 (2004).CrossRefGoogle Scholar
19.Busch, R., Bakke, E., Johnson, W.L., Acta Mater. 46, 4725 (1998).CrossRefGoogle Scholar
20.Lu, J., Ravichandran, G., Johnson, W.L., Acta Mater. 51, 3429 (2003).CrossRefGoogle Scholar
21.Duan, G., Lind, M.L., Demetriou, M.D., Johnson, W.L., Goddard, W.A., Cagin, T., Samwer, K., Appl. Phys. Lett. 89, 151901 (2006).CrossRefGoogle Scholar
22.Zink, M., Samwer, K., Johnson, W.L., Mayr, S.G., Phys. Rev. B: Condens. Matter 74, 012201 (2006).CrossRefGoogle Scholar
23.Masuhr, A., Waniuk, T.A., Busch, R., Johnson, W.L., Phys. Rev. Lett. 82, 2290 (1999); K.H. Tsang, S.K. Lee, H.W. Kui, J. Appl. Phys. 70, 4837 (1991); G. Wilde, G.P. Görler, K. Jeropoulos, R. Willnecker, H.-J. Fecht, Mater. Sci. Forum 269–272, 541 (1998); Y. Kawamura, A. Inoue, Appl. Phys. Lett. 77, 1114 (2000); H.S. Chen, J. Non-Cryst. Solids 27, 257 (1978); I. Egry, G. Lohofer, I. Seyhan, S. Schneider, B. Feuerbacher, Int. J. Thermophys. 20, 1005 (1999); Y. Kawamura, T. Nakamura, H. Kato, H. Mano, A. Inoue, Mater. Sci. Eng. A 304–306, 674 (2001); T. Yamasaki, T. Tatibana, Y. Ogino, A. Inoue, in Bulk Metallic Glasses, W.L. Johnson, A. Inoue, C.T. Liu, Eds. (Mater. Res. Soc. Symp. Proc. 554, Warrendale, PA, 1999) p. 63.CrossRefGoogle Scholar