Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T23:24:17.718Z Has data issue: false hasContentIssue false

Materials Challenges for CdTe and CuInSe2 Photovoltaics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The record laboratory cell (∼1 cm2 area) efficiency for thin-film cadmium telluride (CdTe) is 16.5%, and that for a copper indium diselenide (CuInSe2) thin-film alloy is 19.5%. Commercially produced CdTe and CuInSe2 modules (0.5–1 m2 area) have efficiencies in the 7–11% range. Research is needed both to increase laboratory cell efficiencies and to bring those small - area efficiencies to large-area production. Increases in laboratory CdTe cell efficiency will require increasing open-circuit voltage, which will allow cells to harvest more energy from each absorbed photon. This will require extending the minority carrier lifetime from its present τ ≤ 2 ns to τ ≥ 10 ns and increasing hole concentration in the CdTe beyond 1015 cm2, which appears to be limited by compensating defects. Increasing laboratory CuInSe2-based cell efficiency significantly beyond 19.5% will also require increasing the open-circuit voltage, either by increasing the bandgap, the doping level, or the minority carrier lifetime. The photovoltaic cells in commercial modules occupy tens of square centimeters, and both models and experiments have shown that low-performing regions in small fractions of a cell can significantly reduce the overall cell per formance. Increases in commercial module efficiency will require control of materials properties across large deposition areas in a high-throughput environment to minimize such non-uniformities. This article discusses approaches used and research needed to increase the ultimate efficiencies of CdTe- and CuInSe2-based devices and translate these gains to commercial photovoltaic modules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Green, M.A., Emery, K., King, D.L., Hisikawa, Y., and Warta, W., Prog. Photovol. Res. Appl. 14 (1) (2006) p. 35.Google Scholar
2.Nell, M.E. and Barnett, A.M., IEEE Trans. Elec. Dev. ED34 (2) (1987) p. 257.CrossRefGoogle Scholar
3.Wu, X., Sol. Energy 77 (2004) p. 803.CrossRefGoogle Scholar
4.McCandless, B.E. and Sites, J.R., Handbook of Photovoltaic Science and Engineering, edited by Luque, A. and Hegedus, S. (John Wiley and Sons, 2003) p. 617.CrossRefGoogle Scholar
5.McCandless, B.E. and Hegedus, S.S., Proc. 22nd IEEE PVSC (Las Vegas, 1991) p. 967.Google Scholar
6.McCandless, B.E., Mat. Res. Soc. Symp. Proc. 668 (2001) H1.6.1.CrossRefGoogle Scholar
7.Moutinho, H.R., Al-Jassim, M.M., Levi, D.H., Pippo, P.C., and Kazmerski, L.L., J. Vac. Sci. Technol., A 16 (1998) p. 1251.CrossRefGoogle Scholar
8.Wei, S.-H. and Zhang, S.B., Phys. Rev. B 66 155211–1 (2002).CrossRefGoogle Scholar
9.Metzger, W.K., Albin, D., Levi, D., Sheldon, P., Li, X., Keyes, B.M., and Ahrenkiel, R.K., J. Appl. Phys. 94 (2003) p. 3549.CrossRefGoogle Scholar
10.Kaydanov, V.I. and Ohno, T.R., National Renewable Energy Laboratory Final Technical Report SR-520–31777 (2002).Google Scholar
11.Phillips, J.E., Birkmire, R.W., McCandless, B.E., Meyers, P.V., and Shafarman, W.N., Phys. Status Solidi B 194 (1996) p. 31.CrossRefGoogle Scholar
12.Mickelsen, R. and Chen, W., Conf. Rec. 15th IEEE PVSC (1981) p. 800.Google Scholar
13.Contreras, M.A., Ramanathan, K., Abushama, J., Hasoon, F., Young, D.L., Egaas, B., and Noufi, R., Prog. Photovolt. Res. Appl. 13 (3) (2005) p. 209.CrossRefGoogle Scholar
14.Klenk, R., Bakehe, S., Kaigawa, R., Neisser, A., Reis, J., and Lux-Steiner, M.Ch., Thin Solid Films 451–452 (2004) p. 424.CrossRefGoogle Scholar
15.Romeo, A., Terheggen, M., Abou-Ras, D., Batzner, D.L., Haug, F.-J., Kalin, M., Rudman, D., and Tiwari, A.N., Prog. Photovolt. Res. Appl. 12 (2–3) (2004) p. 93.CrossRefGoogle Scholar
16.Wada, T., Kohara, N., Negami, T., and Nishitani, M., J. Appl. Phys. 35 (1996) L1253.Google Scholar
17.Bar, M., Weinhardt, L., Heske, C., Muffler, H.-J., Lux-Steiner, M.C., Umbach, E., and Fisher, Ch.-H., Prog. Photovolt. Res. Appl. 13 (7) (2005) p. 571.CrossRefGoogle Scholar
18.Wang, L., et al., Mat. Res. Soc. Symp. Proc. 569 (1999) p. 127.CrossRefGoogle Scholar
19.Johnson, P.K., Heath, J.T., Cohen, J.D., Ramanathan, K., and Sites, J.R., Prog. Photovolt. Res. Appl. 13 (7) (2005) 579.CrossRefGoogle Scholar
20.Persson, C., Zhao, Y.-J., Lany, S., and Zunger, A., Phys. Rev. B 72 035211–1 (2005).CrossRefGoogle Scholar