Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-21T04:38:57.590Z Has data issue: false hasContentIssue false

In Situ EXAFS Study of the Photoexcited State and Defects in Chalcogenide Glasses

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Amorphous chalcogenides, of which selenium is the simplest representative, exhibit a number of unique properties such as the ability to undergo various transformations under the action of the bandgap light. On illumination, the absorption edge shifts to lower energies, and subsequent annealing near the glass-transition temperature leads to a recovery of the initial parameters as demonstrated in Figure 1. Such a photo-induced change could not be observed either in amorphous group IV semiconductors or a-As or in crystalline chalcogenides. A good review of the initial stage of these studies was made by de Neufville.

Reversible photodarkening can also be observed in pure chalcogens, but this process can be achieved only at lower temperatures, which is understandable if one takes into account that the glass-transition temperature of selenium is just above room temperature. This result indicates that there is a correlation between the temperature at which photodarkening is annealed out and the flexibility of the glassy network.

Reversible changes in the optical absorption are accompanied by (reversible) changes in electrical and photoelectric properties, volume, microhardness, glass-transition temperature, and dissolution rate in various solvents, to name a few. The totality of these changes has led investigators to the conclusion that the photoinduced changes in optical absorption are caused by changes in structure.

Type
In Situ Synchrotron Radiation Research in Materials Science
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Berkes, J.S., Ing, S.W., and Hillegas, W.J., J. Appl. Phys. 42 (1971) p. 4908.CrossRefGoogle Scholar
2.Tanaka, K., J. Non-Cryst. Solids 137/138 (1991) p. 1.CrossRefGoogle Scholar
3.Mytilineou, E., Taylor, P.C., and Davis, E.A., Solid State Commun. 35 (1980) p. 497.CrossRefGoogle Scholar
4.Hamanaka, H., Tanaka, K., and lizima, S., Solid State Commun. 23 (1977) p. 63.CrossRefGoogle Scholar
5.de Neufville, J.P., in Optical Properties of Solids - New Developments, edited by Seraphin, B.O. (North-Holland, 1976) p. 437.Google Scholar
6.Chang, R., Mater. Res. Bull. 2 (1967) p. 145.CrossRefGoogle Scholar
7.Averyanov, V.L., Kolobov, A.V., Kolomiets, B.T., and Lyubin, V.M., Phys. Status Solidi A 57 (1980) p. 81.CrossRefGoogle Scholar
8.Tanaka, Ke, Jpn. J. Appl. Phys. 25 (1986) p. 779.CrossRefGoogle Scholar
9.Borisova, Z.U., Classy Semiconductors (Plenum Press, New York, 1981).CrossRefGoogle Scholar
10.Averyanov, V.L., Kolomiets, B.T., Lyubin, V.M., and Taguirdzhanov, M.A., in Proc. Amorphous and Liquid Semiconductors, edited by Spear, W.E. (Centre for Industrial Consultancy and Liaison, University of Edinburgh, 1977) p. 802.Google Scholar
11.Shimakawa, K., Phys. Rev. B 34 (1986) p. 8703.CrossRefGoogle Scholar
12.Naito, H., Teramine, T., Okuda, M., and Matsushita, T., J. Non-Cryst. Solids 97/98 (1987) p. 1231.CrossRefGoogle Scholar
13.Shimakawa, K., Hattori, K., and Elliott, S.R., Phys. Rev. B 36 (1987) p. 7741.CrossRefGoogle Scholar
14.Kolomiets, B.T. and Lyubin, V.M., Mater. Res. Bull. 13 (1978) p. 1343.CrossRefGoogle Scholar
15.Kolomiets, B.T., Lantratova, S.S., Lyubin, V.M., and Shilo, V.P., Sov. Phys. Solid State 21 (1979) p. 594.Google Scholar
16.Kolomiets, B.T., Lyubin, V.M., and Shilo, V.P., Fizika i Khimia Stekla 4 (1978) p. 351.Google Scholar
17.Tanaka, K., Solid State Commun. 15 (1974) p. 1521.CrossRefGoogle Scholar
18.Gurevich, S.B., Ilyashenko, N.N., Kolomiets, B.T., Lyubin, V.M., and Shilo, V.P., in Structure and Properties of Non-crystalline Semiconductors, edited by Kolomiets, B.T. (Academy of Sciences, Leningrad, 1976) p. 451.Google Scholar
19.Tanaka, K., Appl. Phys. Lett. 26 (1975) p. 243.CrossRefGoogle Scholar
20.Tanaka, Ke., J. Non-Cryst. Solids 35/36 (1980) p. 1073.CrossRefGoogle Scholar
21.Krasnov, V.F. and Remesnik, V.G., Avtometria 4 (1980) p. 101.Google Scholar
22.Kolobov, A.V., Kolomiets, B.T., Konstantinov, O.V., and Lyubin, V.M., J. Non-Cryst. Solids 45 (1981) p. 335.CrossRefGoogle Scholar
23.Pfeifer, G., Paesler, M.A., and Agnrwal, S.C., J. Non-Cryst. Solids 114 (1989) p. 130 and references therein.CrossRefGoogle Scholar
24.Tanaka, Ke, Rev. Solid State Sci. 4 (1990) p. 641.Google Scholar
25.Shimakawa, K., Kolobov, A.V., and Elliott, S.R., Adv. Phys. 44 (1995) p. 475.CrossRefGoogle Scholar
26.Frumar, M., Firth, A.P., and Owen, A.E., Philos. Mag. B50 (1984) p. 463.CrossRefGoogle Scholar
27.Yang, C.Y., Paesler, M.A., and Sayers, D.E., Phys. Rev. B 36 (1987) p. 9160.CrossRefGoogle Scholar
28.Gladden, L.F., Elliott, S.R., and Greaves, G.N., J. Non-Cryst. Solids 106 (1988) p. 189.CrossRefGoogle Scholar
29.Katayama, Y., Yao, M., Ajiro, Y., Inui, M., and Endo, H., J. Phys. Soc. Jpn. 58 (1989) p. 1811.CrossRefGoogle Scholar
30.Bianconi, A., Longa, S. Delia, Ascone, I., Fontaine, A., and Castellano, C-A., Synchrotron Radiation in the Biophysics, edited by Chance, B.et al. (Clarendon Press, New York, 1994) p. 294.Google Scholar
31.Chance, B., Fischetti, R., and Powers, L., Biochemistry 22 (1983) p. 3820.CrossRefGoogle Scholar
32.Mills, D.M., Lewis, A., Harootunian, A., Huang, J., and Smith, B., Science 223 (1984) p. 811.CrossRefGoogle Scholar
33.Chen, L., Bowman, M., Wang, Z., Montano, P., and Norris, J., J. Phys. Chem. 98 (1994) p. 9457.CrossRefGoogle Scholar
34.Ono, T., Noguchi, T., Inoue, Y., Kusunoki, M., Matsushita, T., and Oyanagi, H., Science 258 (1992) p. 1335.CrossRefGoogle Scholar
35.Oyanagi, H., Kolobov, A.V., and Tanaka, K., J. Synchrotron Radial. 5 (1998) p. 1001.CrossRefGoogle Scholar
36.Oyanagi, H., Shioda, R., Kuwahara, Y., and Haga, K., J. Synchrotron Radial. 2 (1995) p. 99.CrossRefGoogle Scholar
37.Oyanagi, H., Saito, M., and Martini, M., Nucl. lustrum. Methods Phys. Res. A 403 (1998) p. 58.CrossRefGoogle Scholar
38.Stern, E.A., Phys. Rev. B 10 (1974) p. 3027.CrossRefGoogle Scholar
39.Kolobov, A.V., Oyanagi, H., Tanaka, K., and Tanaka, Ke., Phys. Rev. B 55 (1997) p. 726.CrossRefGoogle Scholar
40.Dembovski, S.A. and Chechetkina, E.A., Philos. Mag. B53 (1986) p. 367.CrossRefGoogle Scholar
41.Kolobov, A.V., Oyanagi, H., Roy, A., and Tanaka, K., J. Non-Cryst. Solids 227-230 (1998) p. 710.CrossRefGoogle Scholar
42.Street, R.A., Solid State Commun. 24 (1977) p. 363.CrossRefGoogle Scholar
43.Kolobov, A.V., Kondo, M., Durny, R., Oyanagi, H., Matsuda, A., and Tanaka, K., Phys. Rev. B 55 (1997) p. R485.CrossRefGoogle Scholar
44.Kolobov, A.V., Kondo, M., Oyanagi, H., Matsuda, A., and Tanaka, K., Phys. Rev. B 58 (1998) p. 12004.CrossRefGoogle Scholar
45.Elliott, S.R., J. Non-Cryst. Solids 81 (1986) p. 71.CrossRefGoogle Scholar
46.Dembovsky, S.A., Mater. Res. Bull. 16 (1981) p. 1331.CrossRefGoogle Scholar
47.Hohl, D. and Jones, R.O., Phys. Rev. B 43 (1991) p. 3856.CrossRefGoogle Scholar
48.Bichara, C., Pelegatti, A., and Gaspard, J-P., Phys. Rev. B 49 (1994) p. 6581.CrossRefGoogle Scholar
49.Hisakuni, H. and Tanaka, K., Science 270 (1995) p. 974.CrossRefGoogle Scholar
50.Tanaka, K., in American Institute of Physics Conf. Proc, vol. 31, (American Institute of Physics, New York, 1977) p. 148.Google Scholar
51.McKale, A.G., Veal, B.W., Paulikas, A.P.,Chan, S.K., and Knapp, G.S., American Institute of Physics Conf. Proc 110 (1988) p. 3763.Google Scholar
52.Teo, B.K. and Lee, P.A., J. Am. Chem. Soc. 101 (1979) p. 2815.CrossRefGoogle Scholar