Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-19T02:07:37.632Z Has data issue: false hasContentIssue false

A holistic view of nucleation and self-assembly

Published online by Cambridge University Press:  10 July 2017

James J. De Yoreo*
Affiliation:
Physical Sciences Division, Pacific Northwest National Laboratory; Department of Materials Science and Engineering, University of Washington, USA; james.deyoreo@pnnl.gov
Get access

Abstract

Nucleation is the seminal process in the formation of ordered structures ranging from simple inorganic crystals to macromolecular matrices. Observations over the past 15 years have revealed a rich set of hierarchical nucleation pathways involving higher-order species ranging from multi-ion clusters to dense liquid droplets, as well as transient crystalline or amorphous phases. Despite this complexity, the pathways that lead to nucleation can be described by a holistic framework that is rooted in classical concepts, but which takes into account the coupled effects of perturbations in free-energy landscapes and the impact of dynamical factors. This article describes that framework using a series of in situ transmission electron microscopy and atomic force microscopy studies on inorganic, organic, and macromolecular systems to illustrate the evolution in nucleation processes as these perturbations and dynamical factors come into play. The results provide a common basis for understanding development of order in systems as diverse as simple salt crystals, branched semiconductor nanowires, and microbial membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gibbs, J.W., Smith, A.W., in Trans. Conn. Acad. Arts Sci. 3, 343 (1878).Google Scholar
Becker, R., Doring, W., Ann. Phys. (Berlin) 24, 719 (1935).Google Scholar
De Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., Penn, R.L., Whitelam, S., Joester, D., Zhang, H.Z., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Michel, F.M., Meldrum, F.C., Cölfen, H., Dove, P.M., Science 349, 498 (2015).CrossRefGoogle Scholar
Kashchiev, D., Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, UK, 2000).Google Scholar
De Yoreo, J.J., Vekilov, P.G., in Biomineralization, Dove, P.M., De Yoreo, J.J., Weiner, S., Eds. (Mineralogical Society of America, Washington, DC, 2003), vol. 54, pp. 5793.CrossRefGoogle Scholar
Habraken, W.J.E.M., Tao, J., Brylka, L.J., Friedrich, H., Schenk, A.S., Verch, A., Bomans, P.H.H., Frederik, P.M., Laven, J., van der Schoot, P., Aichmayer, B., de With, B.G., De Yoreo, J.J., Nat. Commun. 4, 1507 (2013), doi:10.1038/ncomms2490.Google Scholar
Demichelis, R., Raiteri, P., Gale, J.D., Quigley, D., Gebauer, D., Nat. Commun. 2, 8 (2011).Google Scholar
Vekilov, P.G., J. Cryst. Growth 275, 65 (2005).Google Scholar
Nielsen, M.H., Aloni, S., De Yoreo, J.J., Science 345, 1158 (2014).Google Scholar
Weiner, S., Traub, W., Wagner, H.D., J. Struct. Biol. 126, 241 (1999).Google Scholar
Dove, P.M., De Yoreo, J.J., Weiner, S., Eds., Biomineralization (Mineralogical Society of America, Washington DC, 2003), vol. 54.Google Scholar
Hu, Q., Nielsen, M.H., Freeman, C.L., Hamm, L.M., Tao, J., Lee, J.R.I., Han, T.Y.J., Becker, U., Harding, J.H., Dove, P.M., De Yoreo, J.J., Faraday Discuss. 159, 509 (2012).CrossRefGoogle Scholar
Addadi, L., Weiner, S., Proc. Natl. Acad. Sci. U.S.A. 82, 4110 (1985).Google Scholar
Addadi, L., Moradian, J., Shay, E., Maroudas, N.G., Weiner, S., Proc. Natl. Acad. Sci. U.S.A. 84, 2732 (1987).Google Scholar
Weiner, S., Sagi, I., Addadi, L., Science 309, 1027 (2005).Google Scholar
Smeets, P.J.M., Cho, K.R., Kempen, R.G.E., Sommerdijk, N.A.J.M., De Yoreo, J.J., Nat. Mater. 14, 394 (2015).Google Scholar
Mann, S., Angew. Chem. Int. Ed. 47, 5306 (2008).Google Scholar
Sleytr, U.B., Messner, P., Pum, D., Sara, M., Angew. Chem. Int. Ed. 38, 1035 (1999).Google Scholar
Chung, S., Shin, S.H., Bertozzi, C.R., De Yoreo, J.J., Proc. Natl. Acad. Sci. U.S.A. 107, 16536 (2010).Google Scholar
Shin, S.H., Chung, S., Sanii, B., Comolli, L.R., Bertozzi, C.R., De Yoreo, J.J., Proc. Natl. Acad. Sci. U.S.A. 109, 12968 (2012).Google Scholar
De Yoreo, J.J., Chung, S., Friddle, R.W., Adv. Funct. Mater. 23, 2525 (2013).Google Scholar
De Yoreo, J.J., Sommerdijk, N.A.J.M., Nat. Rev. Mater. 1, 16035 (2016), doi:10.1038/natrevmats.2016.35.Google Scholar
Ross, F.M., Science 350, 043701 (2015), doi:10.1126/science.aaa9886.Google Scholar
Fukuma, T., Jarvis, S.P., Rev. Sci. Instrum. 77, 043701 (2006), doi:http://dx.doi.org/10.1063/1.2188867.Google Scholar
Ricci, M., Spijker, P., Voitchovsky, K., Nat. Commun. 5, 4400 (2014), doi:10.1038/ncomms5400.Google Scholar
Li, T.S., Donadio, D., Galli, G., Nat. Commun. 4, 1887 (2013), doi:10.1038/ncomms2918.Google Scholar