Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T10:34:36.471Z Has data issue: false hasContentIssue false

From DNA to genetically evolved technology

Published online by Cambridge University Press:  07 June 2013

Lukmaan A. Bawazer*
Affiliation:
School of Chemistry, University of Leeds, UK;L.A.Bawazer@leeds.ac.uk
Get access

Abstract

Watson and Crick’s discovery of the structure of DNA in 1953 and the near-simultaneous advent of the first silicon transistor in 1954 spurred parallel historic advances over the following decades in molecular biology and materials technology. As these two expansive fields of research have progressed, important areas of overlap have included the extensive use of materials innovations in biological research, such as in microscopy and measurement systems, while materials research has benefited from efforts to mimic design principles utilized in nature. Until relatively recently, however, the molecular mechanisms that underpin nature’s biological orchestra have remained largely outside the purview of materials research. Now, with new abilities to harness and modify biomolecular and cellular systems, evidence is mounting that biology can be fruitfully utilized to directly engineer technological materials. This article aims to highlight the importance of DNA-driven routes to new materials while providing a brief overview of the genetic engineering platforms that make these routes possible. Emphasis is placed on the fact that it is now possible to genetically evolve materials technologies in a manner that mimics the genetic evolution of biominerals in nature.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mann, S., Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, Oxford, UK, 2001), p. 240.CrossRefGoogle Scholar
Meldrum, F.C., Colfen, H., Chem. Rev. 108, 4332 (2008).CrossRefGoogle Scholar
Morse, D.E., Trends Biotechnol. 17, 230 (1999).CrossRefGoogle Scholar
Weiner, S., Addadi, L., J. Mater. Chem. 7, 689 (1997).CrossRefGoogle Scholar
Dickerson, M.B., Sandhage, K.H., Naik, R.R., Chem. Rev. 108, 4935 (2008).CrossRefGoogle Scholar
Flynn, C.E., Lee, S.W., Peelle, B.R., Belcher, A.M., Acta Mater. 51, 5867 (2003).CrossRefGoogle Scholar
Rouge, J.L., Eaton, B.E., Feldheim, D.L., Energy Environ. Sci. 4, 398 (2011).CrossRefGoogle Scholar
Sarikaya, M., Tamerler, C., Jen, A.K.Y., Schulten, K., Baneyx, F., Nat. Mater. 2, 577 (2003).CrossRefGoogle Scholar
Dang, X., Yi, H., Ham, M.-H., Qi, J., Yun, D.S., Ladewski, R., Strano, M.S., Hammond, P.T., Belcher, A.M., Nat. Nanotechnol. 6, 377 (2011).CrossRefGoogle Scholar
Lee, Y.J., Yi, H., Kim, W.-J., Kang, K., Yun, D.S., Strano, M.S., Ceder, G., Belcher, A.M., Science 324, 1051 (2009).CrossRefGoogle Scholar
Nam, Y.S., Magya, A.P., Lee, D., Kim, J.-W., Yun, D.S., Park, H., Pollom, T.S. Jr., Weitz, D.A., Belcher, A.M., Nat. Nanotechnol. 5, 340 (2010).CrossRefGoogle Scholar
Nam, K.T., Kim, D.W., Yoo, P.J., Chiang, C.Y., Meethong, N., Hammond, P.T., Chiang, Y.M., Belcher, A.M., Science 312, 885 (2006).CrossRefGoogle Scholar
Bawazer, L.A., Izumi, M., Kolodin, D., Neilson, J.R., Schwenzer, B., Morse, D.E., Proc. Natl. Acad. Sci. U.S.A. 109, E1705 (2012).CrossRefGoogle Scholar
Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.-Y., Algire, M.A., Benders, G.A., Montague, M.G., Ma, L., Moodie, M.M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E.A., Young, L., Qi, Z.-Q., Segall-Shapiro, T.H., Calvey, C.H., Parmar, P.P., Hutchison, C.A. III, Smith, H.O., Venter, C.J., Science 329, 52 (2010).CrossRefGoogle Scholar
Shendure, J., Aiden, E.L., Nat. Biotechnol. 30, 1084 (2012).CrossRefGoogle Scholar
Cheng, A.A., Lu, T.K., in Annual Review of Biomedical Engineering, Yarmush, M.L., Duncan, J.S., Gray, M.L., Eds. (Annual Reviews, Palo Alto, CA, 2012), vol. 14, pp. 155178.Google Scholar
Channon, K., Bromley, E.H.C., Woolfson, D.N., Curr. Opin. Struct. Biol. 18, 491 (2008).CrossRefGoogle Scholar
Feldheim, D.L., Eaton, B.E., ACS Nano 1, 154 (2007).CrossRefGoogle Scholar
Tawfik, D.S., Griffiths, A.D., Nat. Biotechnol. 16, 652 (1998).CrossRefGoogle Scholar
Griffiths, A.D., Tawfik, D.S., Trends Biotechnol. 24, 395 (2006).CrossRefGoogle Scholar
Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., Morse, D.E., Nature 381, 56 (1996).CrossRefGoogle Scholar
Heywood, B.R., Mann, S., Adv. Mater. 6, 9 (1994).CrossRefGoogle Scholar
Meldrum, F.C., Mann, S., Heywood, B.R., Frankel, R.B., Bazylinski, D.A., Proc. R. Soc. B-Biol. Sci. 251, 231 (1993).Google Scholar
Komeili, A., Fems Microb. Rev. 36, 232 (2012).CrossRefGoogle Scholar
Hallegraeff, G.M., Plankton: A Microscopic World (CSIRO, Australia, 1988).CrossRefGoogle Scholar
Hildebrand, M., Chem. Rev. 108, 4855 (2008).CrossRefGoogle Scholar
Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L., Hendler, G., Nature 412, 819 (2001).CrossRefGoogle Scholar
Weaver, J.C., Milliron, G.W., Miserez, A., Evans-Lutterodt, K., Herrera, S., Gallana, I., Mershon, J.W., Swanson, B., Zavattieri, P., DiMasi, E., Kisailus, D., Science 336, 1275 (2012).CrossRefGoogle Scholar
Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., Fratzl, P., Science 309, 275 (2005).CrossRefGoogle Scholar
Studart, A.R., Adv. Mater. 24, 5024 (2012).CrossRefGoogle Scholar
Aizenberg, J., MRS Bulletin 35, 323 (2010).CrossRefGoogle Scholar
Brutchey, R.L., Morse, D.E., Chem. Rev. 108, 4915 (2008).Google Scholar
Brown, K.S.Marean, C.W., Herries, A.I.R., Jacobs, Z., Tribolo, C., Braun, D., Roberts, D.L., Meyer, M.C., Bernatchez, J., Science 325, 859 (2009).CrossRefGoogle Scholar
Mann, S., Nature 332, 119 (1988).CrossRefGoogle Scholar
Mann, S., Nat. Mater. 8, 781 (2009).CrossRefGoogle Scholar
Mann, S., Ozin, G.A., Nature 382, 313 (1996).CrossRefGoogle Scholar
Song, R.-Q., Coelfen, H., Adv. Mater. 22, 1301 (2010).CrossRefGoogle Scholar
Nudelman, F., Sommerdijk, N.A.J.M., Angew. Chem. Inter. Ed. 51, 6582 (2012).CrossRefGoogle Scholar
Alberts, B.Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., Molecular Biology of the Cell (Garland Science, New York, 2008).Google Scholar
Hofstadter, D.R., Godel, Escher, Bach: An Eternal Golden Braid (Penguin Books, London, England, 2000), pp. 495549.Google Scholar
Green, M.R., Sambrook, J., Molecular Cloning: A Laboratory Manual (4th ed.) (Cold Spring Harbor Laboratory Press, New York, 2012).Google Scholar
Kim, Y.-Y.Ganesan, K., Yang, P., Kulak, A.N., Borukhin, S., Pechook, S., Ribeiro, L., Kroeger, R., Eichhorn, S.J., Armes, S.P., Pokroy, B., Meldrum, F.C., Nat. Mater. 10, 890 (2011).CrossRefGoogle Scholar
Canton, B., Labno, A., Endy, D., Nat. Biotechnol. 26, 787 (2008).CrossRefGoogle Scholar
Rothe, A., Surjadi, R.N., Power, B.E., Trends Biotechnol. 24, 587 (2006).CrossRefGoogle Scholar
Agresti, J.J.Antipov, E., Abate, A.R., Ahn, K., Rowat, A.C., Baret, J.-C., Marquez, M., Klibanov, A.M., Griffiths, A.D., Weitz, D.A., Proc. Natl. Acad. Sci. U.S.A. 107, 4004 (2010).CrossRefGoogle Scholar
Gulati, S., Rouilly, V., Niu, X., Chappell, J., Kitney, R.I., Edel, J.B., Freemont, P.S., deMello, A.J., J. Royal Soc. Interface 6 , (2009).CrossRefGoogle Scholar
Ziman, J., Ed., Technological Innovation as an Evolutionary Process (Cambridge University Press, Cambridge, UK, 2000).Google Scholar
Schick, K.D., Toth, N., Making Silent Stones Speak: Human Evolution and The Dawn of Technology (Touchstone, New York, 1994).Google Scholar
Xiang, X.D., Sun, X.D., Briceno, G., Lou, Y.L., Wang, K.A., Chang, Y.H., Wallacefreedman, W.G., Chen, S.W., Schultz, P.G.., Science 268, 1738 (1995).CrossRefGoogle Scholar
Potyrailo, R.Rajan, K., Stoewe, K., Takeuchi, I., Chisholm, B., Lam, H., ACS Comb. Sci. 13, 579 (2011).CrossRefGoogle Scholar
Potyrailo, R.A., Mirsky, V.M., Chem. Rev. 108, 770 (2008).CrossRefGoogle Scholar
Richmond, C.J.Miras, H.M., de la Oliva, A.R., Zang, H., Sans, V., Paramonov, L., Makatsoris, C., Inglis, R., Brechin, E.K., Long, D.-L., Cronin, L., Nat. Chem. 4, 1038 (2012).CrossRefGoogle Scholar
Bird, K., Sherwin, M.J., American Prometheus: The Triumph and Tragedy of J. Robert Oppenheimer (Random House, NY, 2005).Google Scholar
Gugliotti, L.A., Feldheim, D.L., Eaton, B.E., Science 304, 850 (2004).CrossRefGoogle Scholar
Arnold, F.H., Georgiou, G., Eds., Directed Evolution Library Creation: Methods and Protocols (Humana Press, Totowa, NJ, 2003).CrossRefGoogle Scholar
Benkovic, S.J., Hammes-Schiffer, S., Science 301, 1196 (2003).CrossRefGoogle Scholar
Wolfenden, R., Snider, M.J., Acc. Chem. Res. 34, 938 (2001).CrossRefGoogle Scholar
Wilson, D.S., Szostak, J.W., Annu. Rev. Biochem. 68, 611 (1999).CrossRefGoogle Scholar
Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., Belcher, A.M., Nature 405, 665 (2000).CrossRefGoogle Scholar
Tamerler, C., Sarikaya, M., ACS Nano 3, 1606 (2009).CrossRefGoogle Scholar
Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., Stone, M.O., Nat. Mater. 1, 169 (2002).CrossRefGoogle Scholar
Smith, G.P., Science 228, 1315 (1985).CrossRefGoogle Scholar
Barbas, C.F., Kang, A.S., Lerner, R.A., Benkovic, S.J., Proc. Natl. Acad. Sci. U.S.A. 88, 7978 (1991).CrossRefGoogle Scholar
Brown, S., Proc. Natl. Acad. Sci. U.S.A. 89, 8651 (1992).CrossRefGoogle Scholar
Brown, S., Nat. Biotechnol. 15, 269 (1997).CrossRefGoogle Scholar
Naik, R.R., Brott, L.L., Clarson, S.J., Stone, M.O., J. Nanosci. Nanotechnol. 2, 95 (2002).CrossRefGoogle Scholar
Griffiths, A.D., Tawfik, D.S., EMBO J. 22, 24 (2003).CrossRefGoogle Scholar
Murr, M.M., Morse, D.E., Proc. Natl. Acad. Sci. U.S.A. 102, 11657 (2005).CrossRefGoogle Scholar
Hammes, G.G., J. Biol. Chem. 283, 22337 (2008).CrossRefGoogle Scholar
Shimizu, K., Cha, J., Stucky, G.D., Morse, D.E., Proc. Natl. Acad. Sci. U.S.A. 95, 6234 (1998).CrossRefGoogle Scholar
Herzenberg, L.A., Tung, J., Moore, W.A., Herzenberg, L.A., Parks, D.R., Nat. Immunol. 7, 681 (2006).CrossRefGoogle Scholar
Brinker, C.J., Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Elsevier Science, San Diego, CA, 1989).Google Scholar
Mao, C.B., Solis, D.J., Reiss, B.D., Kottmann, S.T., Sweeney, R.Y., Hayhurst, A., Georgiou, G., Iverson, B., Belcher, A.M., Science 303, 213 (2004).CrossRefGoogle Scholar
Park, N., Um, S.H., Funabashi, H., Xu, J., Luo, D., Nat. Mater. 8, 432 (2009).CrossRefGoogle Scholar
Bonetta, L., Nat. Methods 2, 785 (2005).CrossRefGoogle Scholar
Esvelt, K.M., Carlson, J.C., Liu, D.R., Nature 472, 499 (2011).CrossRefGoogle Scholar
Ratcliff, W.C., Denison, R.F., Borrello, M., Travisano, M., Proc. Natl. Acad. Sci. U.S.A. 109, 1595 (2012).CrossRefGoogle Scholar
Khalil, A.S., Collins, J.J., Nat. Rev. Genet. 11, 367 (2010).CrossRefGoogle Scholar
Lander, E.S.et al., Nature 409, 860 (2001).Google Scholar
Venter, J.C.et al., Science 291, 1304 (2001).CrossRefGoogle Scholar
Rothberg, J.M.et al., Nature 475, 348 (2011).CrossRefGoogle Scholar