Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T06:12:28.890Z Has data issue: false hasContentIssue false

Environmental impact of the nuclear fuel cycle: Fate of actinides

Published online by Cambridge University Press:  31 January 2011

Rodney C. Ewing
Affiliation:
Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, USA; rodewing@umich.edu
Wolfgang Runde
Affiliation:
Los Alamos National Laboratory, NM 87545, USA; runde@lanl.gov
Thomas E. Albrecht-Schmitt
Affiliation:
Department of Civil Engineering and Geological Sciences, University of Notre Dame, IN 46556, USA; talbrec1@nd.edu
Get access

Abstract

The resurgence of nuclear power as a strategy for reducing greenhouse gas (GHG) emissions has, in parallel, revived interest in the environmental impact of actinides. Just as GHG emissions are the main environmental impact of the combustion of fossil fuels, the fate of actinides, consumed and produced by nuclear reactions, determines whether nuclear power is viewed as an environmentally “friendly” source of energy. In this article, we summarize the sources of actinides in the nuclear fuel cycle, how actinides are separated by chemical processing, the development of actinide-bearing materials, and the behavior of actinides in the environment. At each stage, actinides present a unique and complicated behavior because of the 5f electronic configurations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ewing, R.C., in Energy, Waste and the Environment: a Geochemical Perspective, Gieré, R., Stille, P., Eds. (The Geological Society, London, 2004), Special Publication 236, pp. 723.Google Scholar
2.Moore, K.T., van der Laan, G., Rev. Mod. Phys. 81, 235 (2009).CrossRefGoogle Scholar
3.Moore, K.T., Micron 41, 336 (2010).CrossRefGoogle Scholar
4.Albright, D., Kramer, K., Bull. At. Sci. 14 (November/December, 2004).Google Scholar
5.Hedin, A., “Spent Nuclear Fuel-How Dangerous is It?” (SKB Tech. Rep. 97–13, Swedish Nuclear Fuel and Waste management Co., Stockholm, 1997), p. 60.Google Scholar
6.von Hippel, F.N., Science 293, 2397 (2001).CrossRefGoogle Scholar
7.Seaborg, G.T., Adventures in the Atomic Age, From Watts to Washington (Farrar, Straus, and Giroux, New York, 2001).Google Scholar
8.Wilson, P.D., The Nuclear Fuel Cycle (Oxford University Press, Oxford, 1996).Google Scholar
9.Birkett, J.E., Carrott, M.J., Fox, O.D., Jones, C.J., Maher, C.J., Roube, C.V., Taylor, R.J., Woodhead, D.A., Chimia 59, 898 (2005).CrossRefGoogle Scholar
10.Miles, J.H., in Science and Technology of Tributyl Phosphate, Schulz, W.W., Navratil, J.D., Eds. (CRC Press, Florida, 1990) Vol. 3, Part 2, pp. 11.Google Scholar
11.Rizkalla, E.N., Choppin, G.R., in Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, K.A., Eyring, L. Jr, Choppin, G.R., Lander, G.H., Eds. (Elsevier Science, New York, 1994), Vol. 18, p. 529.Google Scholar
12.Pearson, R.G., J. Am. Chem. Soc. 85, 3533 (1963).CrossRefGoogle Scholar
13.Nash, K.L., Solvent Extr. Ion Exch. 11, 729 (1993).CrossRefGoogle Scholar
14.Hagström, I., Spjuth, L., Enarsson, A., Liljenzin, J.O., Skalberg, M., Hudson, M.J., Iveson, P.B., Madic, C., Cordier, P. Y., Hill, C., François, N., Solvent Extr. Ion Exch. 17, 221 (1999).CrossRefGoogle Scholar
15.Drew, M.G.B., Iveson, P.B., Hudson, M.J., Liljenzin, J.O., Spjuth, L., Cordier, P.-Y., Enarsson, Å., Hill, C., Madic, C., J. Chem. Soc., Dalton Trans. 821 (2000).Google Scholar
16.Boubals, N., Drew, M.G.B., Hill, C., Hudson, M.J., Iveson, P.B., Madic, C., Russel, M.L., Youngs, T.G.A., J. Chem. Soc., Dalton Trans. 55 (2002).Google Scholar
17.Kolarik, Z., Müllich, U., Gassner, F., Solvent Extr. Ion Exch. 17, 23 (1999).CrossRefGoogle Scholar
18.Kolarik, Z., Müllich, U., Gassner, F., Solvent Extr. Ion Exch. 17, 1155 (1999).CrossRefGoogle Scholar
19.Adnet, J.M., Donnet, L., Brossard, P., Bourges, J., U.S. patent 5609745 (March 11, 1997).Google Scholar
20.Muller, I., Weber, W.J., Vance, E.R., Wicks, G., Karraker, D., in Advances in Plutonium Chemistry 1967–2000, Hoffman, D.C., Ed. (The American Nuclear Society, La Grange Park, Illinois, 2002), pp. 260307.Google Scholar
21.Weber, W.J., Navrotsky, A., Stefanosky, S., Vance, E.R., Vernaz, E., MRS Bull. 34 (1), 46 (2009).CrossRefGoogle Scholar
22.Ewing, R.C., Proc. Natl. Acad. Sci. 96 (7), 3432 (1999).CrossRefGoogle Scholar
23.Ewing, R.C., Weber, W.J., Lian, J., Appl. Phys. Rev. 95 (11), 5949 (2004).CrossRefGoogle Scholar
24.Ewing, R.C., Weber, W.J., in The Chemistry of the Actinide and Transactinide Elements, Morss, L.R., Edlestein, N., Fuger, J., Eds. (Springer, Amsterdam, in press), Vol. 6, 2010.Google Scholar
25.Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., Weinberg, M.C., J. Mater. Res. 12, 1946 (1997).CrossRefGoogle Scholar
26.Weber, W.J., Ewing, R.C., Catlow, C.R.A., Diaz de la Rubia, T., Hobbs, L.W., Kinoshita, C., Matzke, H.J., Motta, A.T., Nastasi, M., Salje, E.H.K., Vance, E.R., Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).CrossRefGoogle Scholar
27.Choppin, G.R., Radiochim. Acta 32, 43 (1983).CrossRefGoogle Scholar
28.Silva, R.J., Nitsche, H., in Advances in Plutonium Chemistry 1967–2000, Hoffman, D.C., Ed. (The American Nuclear Society, La Grange Park, Illinois, 2002), pp. 89117.Google Scholar
29.Conradson, S.D., Appl. Spectrosc. 52 (7), 252A (1998).CrossRefGoogle Scholar
30.Runde, W., Neu, M.P., Conradson, S.D., Li, D., Lin, M., Smith, D.M., Van Pelt, C.E., Xu, Y., Geochem. Soil Radionuclides 59, 45 (2002).Google Scholar
31.Boukhalfa, H., Reilly, S.D., Smith, W.H., Neu, M.P., Inorg. Chem. 43, 5816 (2004).CrossRefGoogle Scholar
32.Al Mahamid, I., Becraft, K.A., Radiochim. Acta 68, 63 (1995).CrossRefGoogle Scholar
33.Meinrath, G., Kim, J.I., Radiochim. Acta 52/53, 29 (1991).CrossRefGoogle Scholar
34.Silva, R.J., Bidoglio, G., Rand, M.H., Robouch, P.B., Wanner, H., Puigdome-nech, I., in Chemical Thermodynamics of Americium (North-Holland Elsevier Science B.V., Amsterdam, The Netherlands, 1995).Google Scholar
35.Vitorge, P., Radiochim. Acta 58/59, 105 (1992).CrossRefGoogle Scholar
36.Lemire, R.J., Fuger, J., Nitsche, H., Potter, P., Rand, M.H., Rydberg, J., Spahiu, K., Sullivan, J.C., Ullman, W.J., Vitorge, R., Wanner, H., Chemical Thermodynamics of Neptunium and Plutonium (Elsevier Science B.V., Amsterdam, The Netherlands, 2001).Google Scholar
37.Lemire, R.J., Garisto, F. (ROE 1LO Rep. No. AECL-10009, 1989).Google Scholar
38.Grenthe, , Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., Wanner, H., Chemical Thermodynamics of Uranium (North-Holland Elsevier Science Publishers, Amsterdam, The Netherlands, 1992).Google Scholar
39.Neck, V., Runde, W., Kim, J.I., J. Alloys Compd. 225, 295 (1995).CrossRefGoogle Scholar
40.Runde, W., Neu, M.P., Clark, D.L., Geochim. Cosmochim. Acta 60 (12), 2065 (1996).CrossRefGoogle Scholar
41.Felmy, A.R., Rai, D., Fulton, R.W., Radiochim. Acta 50 (4), 193 (1990).CrossRefGoogle Scholar
42.Rao, L.F., Rai, D., Felmy, A.R., Fulton, R.W., Novak, C.F., Radiochim. Acta 75 (3), 141 (1996).CrossRefGoogle Scholar
43.Efurd, D.W., Runde, W., Banar, J.C., Janecky, D.R., Kaszuba, J.P., Palmer, P.D., Roensch, F.R., Tait, C.D., Environ. Sci. Technol. 32, 3893 (1998).CrossRefGoogle Scholar
44.Nitsche, H., Gatti, R.C., Standifer, E.M., Lee, S.C., Muller, A., Prussin, T., Deinhammer, R.S., Maurer, H., Becraft, K., Leung, S., Carpenter, S.A., (YMP Milestone Rep. 3010, No. LA-12562-MS, 1993).Google Scholar
45.Kaszuba, J.P., Runde, W., Environ. Sci. Technol. 33, 4427 (1999).CrossRefGoogle Scholar
46.Wronkiewicz, D.J., Buck, E.C., in Uranium: Mineralogy, Geochemistry, and the Environment, Burns, P.B., Finch, R.J., Eds. (Mineralogical Society of America, Washington DC, 1999), Vol. 38, pp. 475494.CrossRefGoogle Scholar
47.Burns, P.C., Klingensmith, A.L., Elements 2, 351 (2006).CrossRefGoogle Scholar
48.Kersting, A.B., Efurd, D.W., Finnegan, D.L., Rokop, D.J., Smith, D.K., Thompson, J.L., Nature 397, 56 (1999).CrossRefGoogle Scholar
49.Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., Ewing, R.C., Horreard, F., Merkulov, A., Clark, S.B., Tkachev, V.V., Myasoedov, B.F., Science 314, 638 (2006)CrossRefGoogle Scholar
50.Neck, V., Altmaier, M., Fanghänel, T., C.R. Chim. 10, 959 (2007).CrossRefGoogle Scholar
51.Rai, D., Serne, R.J., Swanson, J.L., J. Environ. Qual. 9, 417 (1980)CrossRefGoogle Scholar
52.Choppin, G.R., Radiochim. Acta 58/59, 113 (1992).CrossRefGoogle Scholar
53.Zeh, P., Kim, J.I., Marquardt, C.M., Artinger, R., Radiochim. Acta 87, 23 (1999)CrossRefGoogle Scholar
54.Lieser, K.H., Mohlenweg, U., Radiochim. Acta 43, 27 (1988).CrossRefGoogle Scholar
55.Duff, M.C., Hunter, D.B., Triay, I.R., Bertsch, P.M., Reed, D.T., Sutton, S.R., Shea McCarthy, G., Kitten, J., Eng, P., Chipera, S.J., Vaniman, D.T., Environ. Sci. Technol. 33 (13), 2163 (1999).CrossRefGoogle Scholar
56.Reilly, S.D., Myers, W.K., Stout, S.A., Smith, D.M., Ginder-Vogel, M.A., Neu, M.P, presented at the Plutonium Futures-The Science: Third Topical Conference on Plutonium and Actinides, 2003 (unpublished).Google Scholar
57.Stout, S.A., Reilly, S.D., Smith, D.M., Myers, W.K., Ginder-Vogel, M.A., Skantha-kumar, S., Soderholm, L., Neu, M.P., presented at the Plutonium Futures-The Science: Third Topical Conference on Plutonium and Actinides, New Mexico, 2003.Google Scholar
58.Runde, W.H., in Los Alamos Science, Cooper, N.G., Ed. (Los Alamos National Laboratory, Los Alamos, 2000), Vol. 26, pp. 392415.Google Scholar