Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T15:26:40.181Z Has data issue: false hasContentIssue false

Challenges and solutions for high-efficiency quantum dot-based LEDs

Published online by Cambridge University Press:  12 September 2013

Deniz Bozyigit
Affiliation:
ETH Zürich, Switzerland;denizb@iis.ee.ethz.ch
Vanessa Wood
Affiliation:
ETH Zürich, Switzerland;vwood@ethz.ch
Get access

Abstract

Colloidal quantum dots (QDs) hold great promise as electrically excited emitters in light-emitting diodes (LEDs) for solid-state lighting and display applications, as highlighted recently by the demonstration of a red-emitting QD-LED with efficiency on par with that of commercialized organic LED technologies. In the past five years, important advances have been made in the synthesis of QD materials, the understanding of QD physics, and the integration of QDs into solid-state devices. Insights from this progress can be leveraged to develop a set of guidelines to direct QD-LED innovation. This article reviews the fundamental causes of inefficiency in QD-LEDs understood to date and proposes potential solutions. In particular, we emphasize the challenge in developing QD emitters that exhibit high luminescent quantum yields in the combined presence of charge carriers and electric fields that appear during traditional LED operation. To address this challenge, we suggest possible QD chemistries and active layer designs as well as novel device architectures and modes of QD-LED operation. These recommendations serve as examples of the type of innovations needed to drive development and commercialization of high-performance QD-LEDs.

Type
Quantum dot light-emitting devices
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shirasaki, Y., Supran, G.J., Bawendi, M.G., Bulović, V., Nat. Photonics 7, 13 (2012).CrossRefGoogle Scholar
Mashford, B.S., Stevenson, M., Popovic, Z., Hamilton, C., Zhou, Z., Breen, C., Steckel, J., Bulovic, V., Bawendi, M., Coe-Sullivan, S., Kazlas, P.T., Nat. Photonics 7, 407 (2013).CrossRefGoogle Scholar
Anikeeva, P.O., Halpert, J.E., Bawendi, M.G., Bulović, V., Nano Lett. 9, 2532 (2009).CrossRefGoogle Scholar
Kwak, J., Bae, W.K., Lee, D., Park, I., Lim, J., Park, M., Cho, H., Woo, H., Yoon, D.Y., Char, K., Lee, S., Lee, C., Nano Lett. 12, 2362 (2012).CrossRefGoogle Scholar
Anikeeva, P., Madigan, C., Halpert, J., Bawendi, M., Bulović, V., Phys. Rev. B 78, 085434 (2008).CrossRefGoogle Scholar
Wood, V., Bulović, V., ACS Nano 3, 3581 (2009).CrossRefGoogle Scholar
Kuno, M., Lee, J.K., Dabbousi, B.O., Mikulec, F.V., Bawendi, M.G., J. Chem. Phys. 106, 9869 (1997).CrossRefGoogle Scholar
Klimov, V.I., Science 287, 1011 (2000).CrossRefGoogle Scholar
Galland, C., Ghosh, Y., Steinbrück, A., Sykora, M., Hollingsworth, J.A., Klimov, V.I., Htoon, H., Nature 479, 203 (2011).CrossRefGoogle Scholar
Bozyigit, D., Yarema, O., Wood, V., Adv. Funct. Mater. 23, 3024 (2013).CrossRefGoogle Scholar
Talapin, D.V., Lee, J.-S., Kovalenko, M.V., Shevchenko, E.V., Chem. Rev. 110, 389 (2010).CrossRefGoogle Scholar
Hines, M.A., Guyot-Sionnest, P., J. Phys. Chem. 100, 468 (1996).CrossRefGoogle Scholar
Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G., J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar
Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Han, H.-S., Fukumura, D., Jain, R.K., Bawendi, M.G., Nat. Mater. 12, 445 (2013).CrossRefGoogle Scholar
Mahler, B., Spinicelli, P., Buil, S., Quelin, X., Hermier, J.P., Dubertret, B., Nat. Mater. 7, 659 (2008).CrossRefGoogle Scholar
Chen, Y., Vela, J., Htoon, H., Casson, J.L., Werder, D.J., Bussian, D.A., Klimov, V.I., Hollingsworth, J.A., J. Am. Chem. Soc. 130, 5026 (2008).CrossRefGoogle Scholar
García-Santamaría, F., Chen, Y., Vela, J., Schaller, R.D., Hollingsworth, J.A., Klimov, V.I., Nano Lett. 9, 3482 (2009).CrossRefGoogle Scholar
García-Santamaría, F., Brovelli, S., Viswanatha, R., Hollingsworth, J.A., Htoon, H., Crooker, S., Klimov, V.I., Nano Lett. 11, 687 (2011).CrossRefGoogle Scholar
Wang, X., Ren, X., Kahen, K., Hahn, M.A., Rajeswaran, M., Maccagnano-Zacher, S., Silcox, J., Cragg, G.E., Efros, A.L., Krauss, T.D., Nature 459, 686 (2009).CrossRefGoogle Scholar
Cragg, G.E., Efros, A.L., Nano Lett. 10, 313 (2010).CrossRefGoogle Scholar
Pal, B.N., Ghosh, Y., Brovelli, S., Laocharoensuk, R., Klimov, V.I., Hollingsworth, J.A., Htoon, H., Nano Lett. 12, 331 (2012).CrossRefGoogle Scholar
Steckel, J.S., Snee, P., Coe-Sullivan, S., Zimmer, J.P., Halpert, J.E., Anikeeva, P., Kim, L.-A., Bulovi, V., Bawendi, M.G., Angew. Chem. 45, 5796 (2006).CrossRefGoogle Scholar
Caruge, J.M., Halpert, J.E., Wood, V., Bulović, V., Bawendi, M.G., Nat. Photonics 2, 247 (2008).CrossRefGoogle Scholar
Bozyigit, D., Wood, V., Shirasaki, Y., Bulovi, V., J. Appl. Phys. 111, 113701 (2012).CrossRefGoogle Scholar
Shirasaki, Y., Supran, G.J., Tisdale, W.A., Bulović, V., Phys. Rev. Lett. 110, 217403 (2013).CrossRefGoogle Scholar
Kraus, R., Lagoudakis, P.G., Rogach, A.L., Talapin, D.V., Weller, H., Lupton, J.M., Feldmann, J., Phys. Rev. Lett. 98, 3 (2007).CrossRefGoogle Scholar
Empedocles, S.A., Science 278, 2114 (1997).CrossRefGoogle Scholar
Park, S.-J., Link, S., Miller, W.L., Gesquiere, A., Barbara, P.F., Chem. Phys. 341, 169 (2007).CrossRefGoogle Scholar
Jarosz, M., Porter, V., Fisher, B., Kastner, M., Bawendi, M., Phys. Rev. B 70, 195327 (2004).CrossRefGoogle Scholar
Thakar, R., Chen, Y., Snee, P.T., Nano Lett. 7, 3429 (2007).CrossRefGoogle Scholar
Aldakov, D., Lefrançois, A., Reiss, P., J. Mater. Chem. C 1, 3756 (2013).CrossRefGoogle Scholar
Kinder, E., Moroz, P., Diederich, G., Johnson, A., Kirsanova, M., Nemchinov, A., O’Connor, T., Roth, D., Zamkov, M., J. Am. Chem. Soc. 133, 20488 (2011).CrossRefGoogle Scholar
Liu, Y., Gibbs, M., Perkins, C.L., Tolentino, J., Zarghami, M.H., Bustamante, J., Law, M., Nano Lett. 11, 5349 (2011).CrossRefGoogle Scholar
Pourret, A., Guyot-Sionnest, P., Elam, J.W., Adv. Mater. 21, 232 (2009).CrossRefGoogle Scholar
Wood, V., Bulović, V., Nano Rev. 1 (2010), doi:10.3402/nano.v1i0.5202.CrossRefGoogle Scholar
Kobayashi, S., Tani, Y., Kawazoe, H., Jpn. J. Appl. Phys. 46, L966 (2007).CrossRefGoogle Scholar
Wood, V., Panzer, M.J., Bozyigit, D., Shirasaki, Y., Rousseau, I., Geyer, S., Bawendi, M.G., Bulović, V., Nano Lett. 11, 2927 (2011).CrossRefGoogle Scholar
Wood, V., Panzer, M.J., Caruge, J.-M., Halpert, J.E., Bawendi, M.G., Bulović, V., Nano Lett. 10, 24 (2010).CrossRefGoogle Scholar
Wood, V., Halpert, J.E., Panzer, M.J., Bawendi, M.G., Bulović, V., Nano Lett. 9, 2367 (2009).CrossRefGoogle Scholar