Hostname: page-component-f7d5f74f5-dnfjd Total loading time: 0 Render date: 2023-10-05T00:45:40.724Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

YBCO-Coated Conductors Manufactured by High-Rate Pulsed Laser Deposition

Published online by Cambridge University Press:  31 January 2011

Get access


High-temperature superconductors of the second generation—coated conductors—are based on an architecture of YBCO films deposited on a well-textured substrate tape. The deposition technique used in the processing of YBCO films is responsible not only for both the resulting critical currents in the conductors and the cost efficiency of the employed production route, but also for the ultimate viability of the chosen technology. This article describes an advanced deposition method for YBCO films using high-rate pulsed laser deposition (HR-PLD).An elaborate variable azimuth ablation allows target roughening to be considerably reduced in the course of continuous deposition, and as a result, the integral deposition speed and speed stability can be increased to technologically interesting high values.Well-selected process parameters have been demonstrated to yield high currents of up to 480A/cm-width in short tapes and 360A/cm-width in 6-m-long tapes.Together with quasi-equilibrium heating, the HR-PLD method allows the processing of long-length YBCO-coated conductors and offers a cost-efficient route for their production on an industrial scale.

Research Article
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1Iijima, Y.Kakimoto, K.Kimura, M.Takeda, K. and Saitoh, T.IEEE Trans. Appl. Supercond. 11 (2001) p.2816.CrossRefGoogle Scholar
2Foltyn, S.R.Arendt, P.N.Dowden, P.C.DePaula, R.F.Groves, J.R.Coulter, J.Y.Jia, Q.J.Maley, M.P., and Peterson, D.E.IEEE Trans. Appl. Supercond. 9 (1999) p.1519.CrossRefGoogle Scholar
3Usoskin, A.Freyhardt, H.C.Issaev, A.Dzick, J.Knoke, J.Oomen, M.P.Leghissa, M. and Neumueller, H.-W.IEEE Trans. Appl. Supercond. 13 (2003) p.2452.CrossRefGoogle Scholar
4Usoskin, A.Dzick, J.Issaev, A.Knoke, J.Garcia-Moreno, F., Sturm, K. and Freyhardt, H. C.Supercond. Sci. Technol. 14 (2001) p.676.CrossRefGoogle Scholar
5Malozemoff, A.P.Annavarapu, S.Fritzemeier, L.Li, Q.Prunier, V.Rupich, M.Thieme, C.Zhang, W., Goyal, A.Paranthaman, M. and Lee, D.F.Supercond. Sci. Technol. 13 (2000) p.473.CrossRefGoogle Scholar
6Malozemoff, A.P.Verebelyi, D.T.Fleshler, S.Aized, D. and Yu, D.Physica C 386 (2003) p.424.CrossRefGoogle Scholar
7Foltyn, S.R.Dye, R.C.Ott, K.C.Peterson, E.Hubbard, K.M.Hutchinson, W.Muenchausen, R.E.Estler, R.C. and Wu, X.D.Appl. Phys. Lett. 59 (1991) p.594.CrossRefGoogle Scholar
8Cohen, A.Allenspacher, P.Brieger, M.M.Jeuck, I. and Opower, H.Appl. Phys Lett. 59 (1991) p.2186.CrossRefGoogle Scholar
9Kelly, R. and Rothenberg, J.Nucl. Instrum. Methods B 7–8 (1985) p.755.CrossRefGoogle Scholar
10Kelly, R.Cuomo, J.J.Leary, P.A.Rothenberg, J.E.Braren, B.E. and Aliotta, C.F.Nucl. Instrum. Methods B 9 (1985) p.329.CrossRefGoogle Scholar
11Usoskin, A.Freyhardt, H.C. and Krebs, H.U.Appl. Phys. A 69 (1999) p.S823.CrossRefGoogle Scholar
12Inum, A.Wu, X.D.Venkatesan, T.Ogale, S.B.Chang, C.C. and Dijkkamp, D.Appl. Phys Lett. 51 (1987) p.1112.CrossRefGoogle Scholar
13Born, M. and Wolf, E.Principles of Optics (Pergamon Press, Oxford, 1964).Google Scholar
14Usoskin, A.Garcia-Moreno, F., Freyhardt, H.C.Knoke, J.Sievers, S.Gorkhover, L.Hofmann, A. and Pink, F.Appl. Phys. A 69 (1999) p.S423.CrossRefGoogle Scholar
15Misra, D.S. and Palmer, S.B.Physica C 176 (1991) p.43.CrossRefGoogle Scholar
16Usoskin, A.Garcia-Moreno, F., Knoke, J.Sievers, S.Dzick, J. and Freyhardt, H.C. in Inst. Phys. Conf. Ser. No. 167, Vol. 1 (Institute of Physics, New York, 1999) p.447.Google Scholar
17Usoskin, A.Freyhardt, H.C. and Isaev, A. in Frontiers in Superconducting Materials—New Materials and Applications, edited by Matias, V.Talvacchio, J.Xi, X.Han, Z. and Neumüller, H.-W. (Mat. Res. Soc. Symp. Proc. EXS-3, Warrendale, PA, 2004) p.5.Google Scholar
18Usoskin, A.Isaev, A.Knoke, J. and Freyhardt, H.C.YBCO-Coated Tapes with Extra-High Engineering Current Density,” Proc. 5th Eur. Conf. on Applied Superconductivity (EUCAS'03), Sorrento, Italy (in press).Google Scholar
19Christen, H.M.Pulsed Laser Deposition of YBa2Cu307– for Coated Conductor Applications: Current Status and Cost Issues,” in Next Generation High Temperature Superconducting Wires, edited by Goyal, A. (Kluwer Academic/Plenum Publishers, New York, 2004) in press.Google Scholar