Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T10:10:34.746Z Has data issue: false hasContentIssue false

Two-dimensional materials for electronic applications

Published online by Cambridge University Press:  14 August 2014

Max C. Lemme
Affiliation:
University of Siegen, Germany; max.lemme@uni-siegen.de
Lain-Jong Li
Affiliation:
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan; lance.sinica@gmail.com
Tomás Palacios
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA; tpalacios@mit.edu
Frank Schwierz
Affiliation:
Technical University, Germany; frank.schwierz@tu-ilmenau.de
Get access

Abstract

This article reviews the potential of graphene and related two-dimensional (2D) materials for applications in micro- and nanoelectronics. In addition to graphene, special emphasis is placed on transition metal dichalcogenides (TMDs). First, we discuss potential solutions for application-scale material growth, in particular chemical vapor deposition. We describe challenges for electrical contacts and dielectric interfaces with 2D materials. The device-related sections in this review first weigh the pros and cons of semi-metal graphene as a field-effect transistor (FET) channel material for logic and radio frequency applications. This is followed by an introduction to alternate graphene switch concepts that utilize the particular properties of the material, namely tunnel FETs, vertical devices, and bilayer pseudospin FETs. The final section is dedicated to semiconducting TMDs and their integration in FETs using the examples of n-type molybdenum disulfide (MoS2) and p-type tungsten diselenide (WSe2).

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).Google Scholar
Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., J. Phys. Chem. B 108, 19912 (2004).Google Scholar
Wu, Y., Farmer, D.B., Xia, F., Avouris, P., Proc. IEEE 101, 1620 (2013).Google Scholar
Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A.C., Nat. Photonics 4, 611 (2010).CrossRefGoogle Scholar
Chen, C., Hone, J., Proc. IEEE 101, 1766 (2013).Google Scholar
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L., Solid State Commun. 146, 351 (2008).Google Scholar
Murali, R., Yang, Y., Brenner, K., Beck, T., Meindl, J.D., Appl. Phys. Lett. 94, 243114 (2009).Google Scholar
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K., Science 320, 1308 (2008).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J.W., Hone, J., Science 321, 385 (2008).Google Scholar
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N., Nano Lett. 8, 902 (2008).CrossRefGoogle Scholar
Vaziri, S., Lupina, G., Paussa, A., Smith, A.D., Henkel, C., Lippert, G., Dabrowski, J., Mehr, W., Östling, M., Lemme, M.C., Solid State Electron. 84, 185 (2013).CrossRefGoogle Scholar
Mattheiss, L.F., Phys. Rev. B: Condens. Matter 8, 3719 (1973).CrossRefGoogle Scholar
Kuc, A., Zibouche, N., Heine, T., Phys. Rev. B: Condens. Matter 83, 245213 (2011).Google Scholar
Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., Ye, P.D., ACS Nano 8, 4033 (2014).CrossRefGoogle Scholar
Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y., Cond-Mat (2014); http://arxiv.org/abs/1401.4117.Google Scholar
Leong, W.S., Gong, H., Thong, J.T.L., ACS Nano 8, 994 (2014).CrossRefGoogle Scholar
Moon, J.S., Antcliffe, M., Seo, H.C., Curtis, D., Lin, S., Schmitz, A., Milosavljevic, I., Kiselev, A.A., Ross, R.S., Gaskill, D.K., Appl. Phys. Lett. 100, 203512 (2012).Google Scholar
Wang, H., Taychatanapat, T., Hsu, A., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., Palacios, T., IEEE Electron Devices Lett. 32, 1209 (2011).Google Scholar
Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y.P., Pei, S.-S., Appl. Phys. Lett. 93, 113103 (2008).Google Scholar
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S., Science 324, 1312 (2009).Google Scholar
Reina, A., Jia, X., Ho, J., Nexich, D., Son, H., Bulovic, V., Dresselhaus, M., Kong, J., Nano Lett. 9, 30 (2009).CrossRefGoogle Scholar
Mattevi, C., Kim, H., Chhowalla, M., J. Mater. Chem. 21, 3324 (2011).CrossRefGoogle Scholar
Lee, Y.-H., Zhang, X.-Q., Zhang, W., Chang, M.-T., Lin, C.-T., Chang, K.-D., Yu, Y.-C., Wang, J.T.-W., Chang, C.-S., Li, L.-J., Lin, T.-W., Adv. Mater. 24, 2320 (2012).Google Scholar
Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M., Lou, J., Small 8, 966 (2012).Google Scholar
Huang, J.-K., Pu, J., Hsu, C.-L., Chiu, M.-H., Juang, Z.-Y., Chang, Y.-H., Chang, W.-H., Iwasa, Y., Takenobu, T., Li, L.-J., ACS Nano 8, 923 (2014).Google Scholar
Kang, J., Shin, D., Bae, S., Hong, B.H., Nanoscale 4 (18), 5527 (2012).CrossRefGoogle Scholar
Kobayashi, T., Bando, M., Kimura, N., Shimizu, K., Kadono, K., Umezu, N., Miyahara, K., Hayazaki, S., Nagai, S., Mizuguchi, Y., Murakami, Y., Hobara, D., Appl. Phys. Lett. 102, 023112 (2013).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S., Nat. Nano 5, 574 (2010).CrossRefGoogle Scholar
Wang, G., Zhang, M., Zhu, Y., Ding, G., Jiang, D., Guo, Q., Liu, S., Xie, X., Chu, P.K., Di, Z., Wang, X., Sci. Rep. 3, 2465 (2013).CrossRefGoogle Scholar
Lippert, G., Dabrowski, J., Schroeder, T., Schubert, M.A., Yamamoto, Y., Herziger, F., Maultzsch, J., Baringhaus, J., Tegenkamp, C., Arsensio, M.C., Avila, J., Lupina, G., Carbon 75, 104 (2014).CrossRefGoogle Scholar
Lee, J.-H., Lee, E.K., Joo, W.-J., Jang, Y., Kim, B.-S., Lim, J.Y., Choi, S.-H., Ahn, S.J., Ahn, J.R., Park, M.-H., Yang, C.W., Choi, B.L., Hwang, S.-W., Whang, D., Science (2014), doi: 10.1126/science.1252268.Google ScholarPubMed
Neal, A.T., Liu, H., Gu, J.J., Ye, P.D., in Device Research Conference, 70th Annual 65 (IEEE, 2012).Google Scholar
Xia, F., Perebeinos, V., Lin, Y., Wu, Y., Avouris, P., Nat. Nanotechnol. 6, 179 (2011).Google Scholar
Nagashio, K., Toriumi, A., Jpn. J. Appl. Phys. 50, 0108 (2011).Google Scholar
Huard, B., Stander, N., Sulpizio, J.A., Goldhaber-Gordon, D., Phys. Rev. B: Condens. Matter 78, 121402 (2008).Google Scholar
Franklin, A.D., Han, S.-J., Bol, A.A., Haensch, W., IEEE Electron Devices Lett. 32, 1035 (2011).Google Scholar
Nagashio, K., Nishimura, T., Kita, K., Toriumi, A., Int. Electron Devices Meeting 14 (2009).Google Scholar
Balci, O., Kocabas, C., Appl. Phys. Lett. 101, 243105 (2012).Google Scholar
Malec, C.E., Elkus, B., Davidović, D., Solid State Commun. 151, 1791 (2011).Google Scholar
Li, W., Hacker, C.A., Cheng, G., Liang, Y., Tian, B., Walker, A.H., Richter, C.A., Gundlach, D.J., Liang, X., Peng, L., J. Appl. Phys. 115, 114304 (2014).CrossRefGoogle Scholar
Franklin, A.D., Han, S.-J., Bol, A.A., Perebeinos, V., IEEE Electron Devices Lett. 33, 17 (2012).Google Scholar
Matsuda, Y., Deng, W.-Q., Goddard, W.A. III, J. Phys. Chem. C 114, 17845 (2010).Google Scholar
Smith, J.T., Franklin, A.D., Farmer, D.B., Dimitrakopoulos, C.D., ACS Nano 7, 3661 (2013).Google Scholar
International Technology Roadmap for Semiconductors, Emerging Research Devices (2013); http://www.itrs.net.Google Scholar
Li, X., Wang, X., Zhang, L., Lee, S., Dai, H., Science 319, 1229 (2008).Google Scholar
Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., dos Santos, J.M.B.L., Nilsson, J., Guinea, F., Geim, A.K., Castro-Neto, A.H., Phys. Rev. Lett. 99, 216802 (2007).CrossRefGoogle Scholar
Koswatta, S.O., Valdes-Garcia, A., Steiner, M.B., Lin, Y.-M., Avouris, P., IEEE Trans. Microw. Theory Tech. 59 (10), (2011).CrossRefGoogle Scholar
Meric, I., Baklitskaya, P., Kim, P., Shepard, K., Int. Electron Devices Meeting 14 (2008).Google Scholar
Cheng, R., Bai, J., Liao, L., Zhou, H., Chen, Y., Liu, L., Lin, Y.-C., Jiang, S., Huang, Y., Duan, X., Proc. Natl. Acad. Sci. U.S.A. 109, 11588 (2012).Google Scholar
Wu, Y., Jenkins, A., Valdes-Garcia, A., Farmer, D.B., Zhu, Y., Bol, A.A., Dimitrakopoulos, C., Zhu, W., Xia, F., Avouris, P., Lin, Y.-M., Nano Lett. 12, 3062 (2012).Google Scholar
Guo, Z., Dong, R., Chakraborty, P.S., Lourenco, N., Palmer, J., Hu, Y., Ruan, M., Hankinson, J., Kunc, J., Cressler, J.D., Berger, C., de Heer, W.A., Nano Lett. 13 (3), 942 (2013).CrossRefGoogle Scholar
Feng, Z.H., Yu, C., Li, J., Liu, Q.B., He, Z.Z., Song, X.B., Wang, J.J., Cai, S.J., Carbon 75, 249 (2014).Google Scholar
Schwierz, F., Proc. IEEE 101, 1567 (2013).Google Scholar
Das, S., Appenzeller, J., IEEE Trans. Nanotechnol. 10, 1093 (2011).Google Scholar
Szafranek, B.N., Fiori, G., Schall, D., Neumaier, D., Kurz, H., Nano Lett. 12, 1324 (2012).Google Scholar
Fiori, G., Iannaccone, G., Tech. Dig. IEDM 403 (2012).Google Scholar
Wang, H., Hsu, A., Kim, K.K., Kong, J., Palacios, T., Int. Electron Devices Meeting 23.6.1 (2010).Google Scholar
Wang, H., Hsu, A., Wu, J., Kong, J., Palacios, T., IEEE Electron Devices Lett. 31, 906 (2010).Google Scholar
Han, S.-J., Valdes Garcia, A., Oida, S., Jenkins, K.A., Haensch, W., Int. Electron Devices Meeting 19.9.1 (2013).Google Scholar
Thiele, S.A., Schaefer, J.A., Schwierz, F., J. Appl. Phys. 107, 094505 (2010).Google Scholar
Wang, H., Hsu, A., Kong, J., Antoniadis, D.A., Palacios, T., IEEE Trans. Electron Devices 58, 1523 (2011).CrossRefGoogle Scholar
Rodriguez, S., Vaziri, S., Smith, A., Fregonese, S., Ostling, M., Lemme, M.C., Rusu, A., IEEE Trans. Electron Devices 61 (4), 1199 (2014).Google Scholar
Ionescu, A.M., Riel, H., Nature 479, 329 (2011).Google Scholar
Iannaccone, G., Fiori, G., Macucci, M., Michetti, P., Cheli, M., Betti, A., Marconcini, P., Int. Electron Devices Meeting 14 (2009).Google Scholar
Luisier, M., Klimeck, G., Appl. Phys. Lett. 94, 223505 (2009).Google Scholar
Fiori, G., Iannaccone, G., IEEE Electron Devices Lett. 30, 1096 (2009).Google Scholar
Jena, D., Proc. IEEE 101, 1585 (2013).Google Scholar
Yang, H., Heo, J., Park, S., Song, H.J., Seo, D.H., Byun, K.-E., Kim, P., Yoo, I., Chung, H.-J., Kim, K., Science 336, 1140 (2012).Google Scholar
Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A., Science 335, 947 (2012).Google Scholar
Mehr, W., Scheytt, J.C., Dabrowski, J., Lippert, G., Xie, Y.-H., Lemme, M.C., Ostling, M., Lupina, G., IEEE Electron Devices Lett. 33, 691 (2012).Google Scholar
Vaziri, S., Lupina, G., Henkel, C., Smith, A.D., Östling, M., Dabrowski, J., Lippert, G., Mehr, W., Lemme, M.C., Nano Lett. 13, 1435 (2013).CrossRefGoogle Scholar
Zeng, C., Song, E.B., Wang, M., Lee, S., Torres, C.M., Tang, J., Weiller, B.H., Wang, K.L., Nano Lett. 13, 2370 (2013).Google Scholar
Britnell, L., Gorbachev, R.V., Geim, A.K., Ponomarenko, L.A., Mishchenko, A., Greenaway, M.T., Fromhold, T.M., Novoselov, K.S., Eaves, L., Nat. Commun. 4, 1794 (2013).Google Scholar
Zhao, P., Feenstra, R.M., Gu, G., Jena, D., Device Research Conference, 2012 70th Annual (2012), pp. 3334.CrossRefGoogle Scholar
Min, H., Bistritzer, R., Su, J.-J., MacDonald, A.H., Phys. Rev. B: Condens. Matter 78, 121401 (2008).Google Scholar
Banerjee, S.K., Register, L.F., Tutuc, E., Reddy, D., MacDonald, A.H., IEEE Electron Devices Lett. 30, 158 (2009).Google Scholar
Zhang, C.-H., Joglekar, Y.N., Phys. Rev. B: Condens. Matter 77, 233405 (2008).Google Scholar
Reddy, D., Register, L.F., Tutuc, E., Banerjee, S.K., IEEE Trans. Electron Devices 57, 755 (2010).CrossRefGoogle Scholar
Sodemann, I., Pesin, D.A., MacDonald, A.H., Phys. Rev. B: Condens. Matter 85, 195136 (2012).CrossRefGoogle Scholar
Kharitonov, M.Y., Efetov, K.B., Semicond. Sci. Technol. 25, 034004 (2010).Google Scholar
Suprunenko, Y.F., Cheianov, V., Fal’ko, V.I., Phys. Rev. B: Condens. Matter 86, 155405 (2012).Google Scholar
Basu, D., Register, L.F., Reddy, D., MacDonald, A.H., Banerjee, S.K., Phys. Rev. B: Condens. Matter 82, 075409 (2010).Google Scholar
Register, L.F., Mou, X., Reddy, D., Jung, W., Sodemann, I., Pesin, D., Hassibi, A., MacDonald, A.H., Banerjee, S.K., ECS Trans. 45, 3 (2012).Google Scholar
Gilbert, M.J., IEEE Trans. Electron Devices 57, 3059 (2010).Google Scholar
Dellabetta, B., Gilbert, M.J., Device Research Conference, 2011 69th Annual, 65 (2011).Google Scholar
Bernstein, K., Cavin, R.K., Porod, W., Seabaugh, A., Welser, J., Proc. IEEE 98, 2169 (2010).Google Scholar
Nikonov, D.E., Young, I.A., Proc. IEEE 101, 2498 (2013).Google Scholar
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).Google Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Nat. Nanotechnol. 6, 147 (2011).Google Scholar
Wang, H., Yu, L., Lee, Y.-H., Shi, Y., Hsu, A., Chin, M.L., Li, L.-J., Dubey, M., Kong, J., Palacios, T., Nano Lett. 12, 4674 (2012).Google Scholar
Wang, H., Yu, L., Lee, Y., Fang, W., Hsu, A., Herring, P., Chin, M., Dubey, M., Li, L., Kong, J., Palacios, T., Int. Electron Devices Meeting 4.6.1 (2012).Google Scholar
Fang, H., Chuang, S., Chang, T.C., Takei, K., Takahashi, T., Javey, A., Nano Lett. 12, 3788 (2012).CrossRefGoogle Scholar
Frank, D.J., Taur, Y., Wong, H.S.P., IEEE Electron Devices Lett. 19, 385 (1998).Google Scholar
Uchida, K., Koga, J., Takagi, S., Tech. Dig. Int. Electron Devices Meeting 33.5.1 (2003).Google Scholar
Schmidt, M., Lemme, M.C., Gottlob, H.D.B., Driussi, F., Selmi, L., Kurz, H., Solid State Electron. 53, 1246 (2009).Google Scholar
Lee, G.-H., Yu, Y.-J., Cui, X., Petrone, N., Lee, C.-H., Choi, M.S., Lee, D.-Y., Lee, C., Yoo, W.J., Watanabe, K., ACS Nano 7, 7931 (2013).Google Scholar
Yoon, J., Park, W., Bae, G.-Y., Kim, Y., Jang, H.S., Hyun, Y., Lim, S.K., Kahng, Y.H., Hong, W.-K., Lee, B.H., Small 9, 3295 (2013).Google Scholar
Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., Zhang, H., ACS Nano 6, 74 (2012).Google Scholar
Mueller, T., Xia, F., Avouris, P., Nat. Photonics 4, 297 (2010).Google Scholar
Pospischil, A., Humer, M., Furchi, M.M., Bachmann, D., Guider, R., Fromherz, T., Mueller, T., Nat. Photonics 7, 892 (2013).Google Scholar
Lemme, M.C., Koppens, F.H.L., Falk, A.L., Rudner, M.S., Park, H., Levitov, L.S., Marcus, C.M., Nano Lett. 11, 4134 (2011).Google Scholar
Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L., Science 315, 490 (2007).Google Scholar
Smith, A.D., Niklaus, F., Paussa, A., Vaziri, S., Fischer, A.C., Sterner, M., Forsberg, F., Delin, A., Esseni, D., Palestri, P., Östling, M., Lemme, M.C., Nano Lett. 13, 3237 (2013).Google Scholar
Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S., Nat. Mater. 6, 652 (2007).Google Scholar
Hess, L.H., Seifert, M., Garrido, J.A., Proc. IEEE 101, 1780 (2013).Google Scholar
Schwierz, F., Nat. Nanotechnol. 5, 487 (2010).Google Scholar
Schwierz, F., Nature 472, 41 (2011).CrossRefGoogle Scholar