Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T22:25:46.176Z Has data issue: false hasContentIssue false

Two- and Three-Dimensional Photonic Crystals Built with VLSI Tools

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The drive toward miniature photonic devices has been hindered by our inability to tightly control and manipulate light. Moreover, photonics technologies are typically not based on silicon and, until recently, only indirectly benefited from the rapid advances being made in silicon processing technology. In the first part of this article, the successful fabrication of three-dimensional (3D) photonic crystals using silicon processing will be discussed. This advance has been made possible through the use of integrated-circuit (IC) fabrication technologies (e.g., very largescale integration, VLSI) and may enable the penetration of Si processing into photonics. In the second part, we describe the creation of 2D photonic-crystal slabs operating at the λ = 1.55 μm communications wavelength. This class of 2D photonic crystals is particularly promising for planar on-chip guiding, trapping, and switching of light.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yablonovitch, E., Phys. Rev. Lett. 58 (1987) p. 2059.CrossRefGoogle Scholar
2.John, S., Phys. Rev. Lett. 58 (1987) p.2486.CrossRefGoogle Scholar
3.Yablonovitch, E. and Gmitter, T.J., Phys. Rev. Lett. 63 (1989) p.1950.CrossRefGoogle Scholar
4.Ho, K.M., Chan, C.T., Soukoulis, C.M., Biswas, R., and Sigalas, M.M., Solid State Commun. 89 (1994) p.413.CrossRefGoogle Scholar
5.Ozbay, E., Abeyta, A., Turtle, G., Tringides, M., Biswas, R., Soukoulis, C.M., Chan, C.T., and Ho, K.M., Phys. Rev. B 50 (1994) p.1945.CrossRefGoogle Scholar
6.Lin, S.Y., Fleming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, K.M., Sigalas, M.M., Zubrzycki, W., Kurtz, S.R., and Bur, J., Nature 394 (1998) p.251.CrossRefGoogle Scholar
7.Fleming, J.G. and Lin, S.Y., Opt. Lett. 24 (1999) p.49.CrossRefGoogle Scholar
8.Sozuer, H. and Dowling, J., J. Mod. Opt. 41 (1994) p.231.CrossRefGoogle Scholar
9.Leung, K.M., Phys. Rev. B 56 (1997) p.3517.CrossRefGoogle Scholar
10.Fan, S.H., Villeneuve, P.R., Meade, R.D., and Joannopoulos, J.D., Appl. Phys. Lett. 65 (1994) p.1466.CrossRefGoogle Scholar
11.Wada, M., Doi, Y., Inoue, K., Haus, J.W., and Yuan, Z., Appl. Phys. Lett. 70 (1997) p.2966.CrossRefGoogle Scholar
12.Lin, S.Y., Fleming, J.G., Lin, R., Sigalas, M.M., Biswas, R., and Ho, K.M., J. Opt. Soc. Am. B 18 (2001) p.32.CrossRefGoogle Scholar
13.Cheng, C.C., Arbet-Engels, V., Scherer, A., and Yablonovitch, E., Phys. Scr., T 68 (1996) p.17.CrossRefGoogle Scholar
14.Fleming, J.G. and Lin, S.Y., in Proc. SPIE Photonics Technology into the 21st Century: Semiconductors, Microstructures, and Nanostructures, Vol. 3899, edited by Ho, S.T., Zhou, Y., Chow, W.W., and Arakawa, Y. (SPIE—The International Society for Optical Engineering, Bellingham, WA, 1999) p.258.CrossRefGoogle Scholar
15.Johnson, S.G. and Joannopoulos, J.D., Appl. Phys. Lett. 77 (2000) p.3490.CrossRefGoogle Scholar
16.Lin, S.Y. and Fleming, J.G., IEEE J. Lightwave Technol. 17 (1999) p.1944.CrossRefGoogle Scholar
17.Lin, S.-Y., Chow, E., Hietala, V., Villeneuve, P.R., and Joannopoulos, J.D., Science 282 (1998) p.274.CrossRefGoogle Scholar
18.Sigalas, M.M., Biswas, R., Ho, K.M., Soukoulis, C.M., Turner, D., Vasiliu, B., Kothari, S.C., and Lin, S., Microwave Opt. Tech. Lett. 23 (1999) p.56.3.0.CO;2-1>CrossRefGoogle Scholar
19.Chutinan, A. and Noda, S., Appl. Phys. Lett. 75 (1999) p.3739.CrossRefGoogle Scholar
20.Lin, S.-Y., Fleming, J.G., Sigalas, M.M., Biswas, R., and Ho, K.M., Phys. Rev. B 59 (1999) p.579.Google Scholar
21.Yablonovitch, E., J. Opt. Soc. Am. B 10 (1993) p.283.CrossRefGoogle Scholar
22.Joannopoulos, J.D., Meade, R.D., and Winn, J.N., Photonic Crystals (Princeton University Press, Princeton, NJ, 1995).Google Scholar
23.Lin, S.Y., Arjavalingam, G., and Robertson, W.M., J. Mod. Opt. 41 (1994) p.385.CrossRefGoogle Scholar
24.Gruning, U. and Lehmann, V., Thin Solid Films 276 (1996) p.151.CrossRefGoogle Scholar
25.Rosenberg, A., Tonucci, R.J., Lin, H.B., and Campillo, A.J., Opt. Lett. 21 (1996) p.830.CrossRefGoogle Scholar
26.Krauss, T.F., De La Rue, R.M., and Brand, S., Nature 383 (1996) p.699.CrossRefGoogle Scholar
27.Labilloy, D., Benisty, H., Weisbuch, C., Krauss, T.F., De La Rue, R.M., Bardinal, V., Houdre, R., Oesterle, U., Cassagne, D., and Jouanin, C., Phys. Rev. Lett. 79 (1997) p.4147.CrossRefGoogle Scholar
28.Benisty, H., Labilloy, D., Weisbuch, C., Rattier, M., C.Smith, J.M., Krauss, T.F., De La Rue, R.M., Houdre, R., Bardinal, V., Oesterle, U., Jouanin, C., and Cassagne, D., IEEE J. Lightwave Technol. 17 (1999) p.2063.CrossRefGoogle Scholar
29.Kanskar, M., Paddon, P., Pacradouni, V., Morin, R., Busch, A., and Young, J.F., Appl. Phys. Lett. 70 (1997) p.1438.CrossRefGoogle Scholar
30.Chow, E., Lin, S.Y., Johnson, S.G., Villeneuve, P.R., Joannopoulos, J.D., Wendt, J.R., Vawter, G.A., Zubrzycki, W., Hou, H., and Alleman, A., Nature 407 (2000) p.983.CrossRefGoogle Scholar
31.Lin, S.Y., Chow, E., Johnson, S., and Joannopoulos, J.D., Opt. Lett. 25 (2000) p.1297.CrossRefGoogle Scholar
32.Painter, O., Lee, R.K., Scherer, A., Yariv, A., O'Brien, J.D., Dapkus, P.D., and Kim, I., Science 284 (1999) p.1819.CrossRefGoogle Scholar
33.Villeneuve, P.R., Fan, S., Johnson, S.G., and Joannopoulos, J.D., in IEE Proc. Optoelec., Vol. 145 (Institution of Electrical Engineers, London, 1998) p.384.Google Scholar
34.Johnson, S.G., Fan, S., Villeneuve, P.R., and Joannopoulos, J.D., Phys. Rev. B 60 (1999) p.5751.CrossRefGoogle Scholar
35.Chow, E., Lin, S.Y., Wendt, J.R., Johnson, S.G., and Joannopoulos, J.D., Opt. Lett. 26 (2001) p.286.CrossRefGoogle Scholar