Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-pclkk Total loading time: 0.236 Render date: 2021-05-12T22:00:01.366Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Surface modification and fabrication of 3D nanostructures by atomic layer deposition

Published online by Cambridge University Press:  18 November 2011

Changdeuck Bae
Affiliation:
Institute of Applied Physics, University of Hamburg, Germany; cdbae@physnet.uni-hamburg.de
Hyunjung Shin
Affiliation:
Kookmin University, Seoul, Korea; hjshin@kmu.kookmin.ac.kr
Kornelius Nielsch
Affiliation:
University of Hamburg, Germany; knielsch@physnet.uni-hamburg.de
Get access

Abstract

Atomic layer deposition (ALD) not only presents a direct way to prepare nanomaterials when combined with templates, but also allows surface engineering to fine-tune the properties of the material. Here, we review recent progress in the field of nanostructured materials and devices that have been fabricated by ALD. Various materials, including semiconducting, magnetic, noble metallic, and insulating materials, can be used to form three-dimensional (3D), complex nanostructures with controlled composition and physical properties. We begin this review with ALD nanomaterials that can be prepared from porous templates with a 2D pore arrangement, such as anodic aluminum oxide, and advance toward opal structures with a 3D pore arrangement. We also discuss surface engineering by ALD on existing nanowires/nanotubes, devices, and chemical patterns that has the potential for application in high-performance transistors, sensors, and green energy conversion. Finally, we provide perspectives for future device applications that could arise from ALD nanomaterials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Lim, B.S., Rahtu, A., Gordon, R.G., Nat. Mater. 2, 749 (2003).CrossRefGoogle Scholar
2.Puurunen, R.L., J. Appl. Phys. 97, 121301 (2005).CrossRefGoogle Scholar
3.Knez, M., Nielsch, K., Niinistö, L., Adv. Mater. 19, 3425 (2007).CrossRefGoogle Scholar
4.George, S.M., Chem. Rev. 110, 111 (2010).CrossRefGoogle Scholar
5.Martinson, A.B.F., Elam, J.W., Hupp, J.T., Pellin, M.J., Nano Lett. 7, 2183 (2007).CrossRefGoogle Scholar
6.Martinson, A.B.F., Elam, J.W., Liu, J., Pellin, M.J., Marks, T.J., Hupp, J.T., Nano Lett. 8, 2862 (2008).CrossRefGoogle Scholar
7.Elam, J.W., Baker, D.A., Martinson, A.B.F., Pellin, M.J., Hupp, J.T., J. Phys. Chem. C 112, 1938 (2008).CrossRefGoogle Scholar
8.Chao, C.-C., Hsu, C.-M., Cui, Y., Prinz, F.B., ACS Nano (2011), doi:10.1021/nn201354p.Google Scholar
9.Scott, I.D., Jung, Y.S., Cavanagh, A.S., Yan, Y., Dillon, A.C., George, S.M., Lee, S.-H., Nano Lett. 11, 414 (2011).CrossRefGoogle Scholar
10.Yao, Y., McDowell, M.T., Ryu, I., Wu, H., Liu, N., Hu, L., Nix, W.D., Cui, Y., Nano Lett., doi:10.1021/n1201470j.Google Scholar
11.Patzke, G.R., Krumeich, F., Nesper, R., Angew. Chem. Int. Ed. 41, 2446 (2002).3.0.CO;2-K>CrossRefGoogle Scholar
12.Roy, P., Berger, S., Schmuki, P., Angew. Chem. Int. Ed. 50, 2904 (2011).CrossRefGoogle Scholar
13.Morin, S.A., Bierman, M.J., Tong, J., Jin, S., Science 328, 476 (2010).CrossRefGoogle Scholar
14.Jia, C.-J., Sun, L.-D., Yan, Z.-G., You, L.-P., Luo, F., Han, X.-D., Pang, Y.-C., Zhang, Z., Yan, C.-H., Angew. Chem. Int. Ed. 44, 4328 (2005).CrossRefGoogle Scholar
15.Bae, C., Yoo, H., Kim, S., Lee, K., Kim, J., Sung, M.M., Shin, H., Chem. Mater. 20, 756 (2008).CrossRefGoogle Scholar
16.Shin, H.J., Jeong, D.K., Lee, J.G., Sung, M.M., Kim, J.Y., Adv. Mater. 16, 1197 (2004).CrossRefGoogle Scholar
17.Sander, M.S., Côté, M.J., Gu, W., Kile, B.M., Tripp, C.P., Adv. Mater. 16, 2052 (2004).CrossRefGoogle Scholar
18.Elam, J.W., Routkevitch, D., Mardilovich, P.P., George, S.M., Chem. Mater. 15, 3507 (2003).CrossRefGoogle Scholar
19.Knez, M., Kadri, A., Wege, C., Gösele, U., Jeske, H., Nielsch, K., Nano Lett. 6, 1172 (2006).CrossRefGoogle Scholar
20.Bae, C., Yoon, Y., Yoo, H., Han, D., Cho, J., Lee, B.H., Sung, M.M., Lee, M.G., Kim, J., Shin, H., Chem. Mater. 21, 2574 (2009).CrossRefGoogle Scholar
21.Bachmann, J., Zierold, R., Chong, Y.T., Hauert, R., Sturm, C., Schmidt-Grund, R., Rheinländer, B., Grundmann, M., Gösele, U., Nielsch, K., Angew. Chem. Int. Ed. 47, 6177 (2008).CrossRefGoogle Scholar
22.(a) Lee, J., Farhangfar, S., Yang, R., Scholz, R., Alexe, M., Gösele, U., Lee, J., Nielsch, K., J. Mater. Chem. 19, 7050 (2009). (b) S.K. Panda, D. Han, H. Yoo, H. Shin, H. Park, J. Xu, Electrochem. Solid-State Lett. 14, E21 (2011).CrossRefGoogle Scholar
23.Tan, L.K., Chong, A.S.M., Tang, X.S.E., Gao, H., J. Phys. Chem. C 111, 4964 (2007).CrossRefGoogle Scholar
24.Zierold, R., Wu, Z., Biskupek, J., Kaiser, U., Bachmann, J., Krill, C.E. III, Nielsch, K., Adv. Funct. Mater. 21, 226 (2011).CrossRefGoogle Scholar
25.Bachmann, J., Jing, J., Knez, M., Barth, S., Shen, H., Mathur, S., Gösele, U., Nielsch, K., J. Am. Chem. Soc. 129, 9554 (2007).CrossRefGoogle Scholar
26.Escrig, J., Bachmann, J., Jing, J., Daub, M., Altbir, D., Nielsch, K., Phys. Rev. B 77, 214421 (2008).CrossRefGoogle Scholar
27.Rooth, M., Johansson, A., Kukli, K., Aarik, J., Boman, M., Hårsta, A., Chem. Vap. Dep. 14, 67 (2008).CrossRefGoogle Scholar
28.Pitzschel, K., Montero Moreno, J.M., Escrig, J., Albrecht, O., Nielsch, K., Bachmann, J., ACS Nano 3, 3463 (2009).CrossRefGoogle Scholar
29.Chong, Y.T., Yau, E.M.Y., Nielsch, K., Bachmann, J., Chem. Mater. 22, 6506 (2010).CrossRefGoogle Scholar
30.Daub, M., Knez, M., Gösele, U., Nielsch, K., J. Appl. Phys. 101, 09J111 (2007).CrossRefGoogle Scholar
31.Kim, W.-H., Lee, H.-B.-R., Heo, K., Lee, Y.K., Chung, T.-M., Kim, C.G., Hong, S., Heo, J., Kim, H., J Electrochem. Soc. 158, D1 (2011).CrossRefGoogle Scholar
32.Lee, D.-J., Yim, S.-S., Kim, K.-S., Kim, S.-H., Kim, K.-B., Electrochem. Solid-State Lett. 11, K61 (2008).CrossRefGoogle Scholar
33.Farhangfar, S., Yang, R.B., Pelletier, M., Nielsch, K., Nanotechnology 20, 325602 (2009).CrossRefGoogle Scholar
34.Yang, R.B., Bachmann, J., Reiche, M., Gerlach, J.W., Gösele, U., Nielsch, K., Chem. Mater. 21, 2586 (2009).CrossRefGoogle Scholar
35.Rooth, M., PhD dissertation, Uppsala University (2008).Google Scholar
36.Ho, K.M., Chan, C.T., Soukoulis, C.M., Phys. Rev. Lett. 65, 3125 (1990).Google Scholar
37.Leung, K.M., Liu, Y.F., Phys. Rev. Lett. 65, 2646 (1990).CrossRefGoogle Scholar
38.Yablonovitch, E., Gmitter, T.J., Leung, K.M., Phys. Rev. Lett. 67, 2295 (1991).CrossRefGoogle Scholar
39.King, J.S., Graugnard, E., Summers, C.J., Adv. Mater. 17, 1010 (2005).CrossRefGoogle Scholar
40.Rugge, A., Becker, J.S., Gordon, R.G., Tolbert, S.H., Nano Lett. 3, 1293 (2003).CrossRefGoogle Scholar
41.King, J.S., Neff, C.W., Summers, C.J., Park, W., Blomquist, S., Forsythe, E., Morton, D., Appl. Phys. Lett. 83, 2566 (2003).CrossRefGoogle Scholar
42.Graugnard, E., Chawla, V., Lorang, D., Summers, C.J., Appl. Phys. Lett. 89, 211102 (2006).CrossRefGoogle Scholar
43.Graugnard, E., King, J.S., Gaillot, D.P., Summers, C.J., Adv. Funct. Mater. 16, 1187 (2006).CrossRefGoogle Scholar
44.Scharrer, M., Wu, X., Yamilov, A., Cao, H., Chang, R.P.H., Appl. Phys. Lett. 86, 151113 (2005).CrossRefGoogle Scholar
45.King, J.S., Gaillot, D.P., Graugnard, E., Summers, C.J., Adv. Mater. 18, 1063 (2006).CrossRefGoogle Scholar
46.Rugge, A., Park, J.-S., Gordon, R.G., Tolbert, S.H., J. Phys. Chem. B 109, 3764 (2005).CrossRefGoogle Scholar
47.Gordon, R.G., Hausmann, D., Kim, E., Shepard, J., Chem. Vap. Dep. 9, 6773 (2003).CrossRefGoogle Scholar
48.Perez, I., Robertson, E., Banerjee, P., Henn-Lecordier, L., Son, S.J., Lee, S.B., Rubloff, G.W., Small 8, 1223 (2008).CrossRefGoogle Scholar
49.Kucheyev, S.O., Biener, J., Baumann, T.F., Wang, Y.M., Hamza, A.V., Li, Z., Lee, D.K., Gordon, R.G., Langmuir 24, 943 (2008).CrossRefGoogle Scholar
50.Yang, R.B., Zakharov, N., Moutanabbir, O., Scheerschmidt, K., Wu, L.-M., Gösele, U., Bachmann, J., Nielsch, K., J. Am. Chem. Soc. 132, 7592 (2010).CrossRefGoogle Scholar
51.Könenkamp, R., Phys. Rev. B, 61, 11057 (2000).CrossRefGoogle Scholar
52.Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H., Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
53.Hwang, J., Min, B., Lee, J., Keem, K., Cho, K., Sung, M.Y., Lee, M.S., Kim, S., Adv. Mater. 16, 422 (2004).CrossRefGoogle Scholar
54.Fan, H.J., Knez, M., Scholz, R., Nielsch, K., Pippel, E., Hesse, D., Zacharias, M., Gösele, U., Nat. Mater. 5, 627 (2006).CrossRefGoogle Scholar
55.Javey, A., Kim, H., Brink, M., Wang, Q., Ural, A., Guo, J., McIntyre, P., McEuen, P., Lundstrom, M., Dai, H.J., Nat. Mater. 1, 241 (2002).CrossRefGoogle Scholar
56.Wang, D., Wang, Q., Javey, A., Tu, R., Dai, H., Kim, H., McIntyre, P.C., Krishnamohan, T., Saraswat, K.C., Appl. Phys. Lett. 83, 2432 (2003).CrossRefGoogle Scholar
57.Lu, Y., Bangsaruntip, S., Wang, X., Zhang, L., Nishi, Y., Dai, H., J. Am. Chem. Soc. 128, 3518 (2006).CrossRefGoogle Scholar
58.Farmer, D.B., Gordon, R.G., Nano Lett. 6, 699 (2006).CrossRefGoogle Scholar
59.Chen, R., Bent, S.F., Adv. Mater. 18, 1086 (2006).CrossRefGoogle Scholar
60.Park, K.S., Seo, E.K., Do, Y.R., Kim, K., Sung, M.M., J. Am. Chem. Soc. 128, 858 (2006).CrossRefGoogle Scholar
61.Sinha, A., Hess, D.W.. Henderson, C.L., J. Vac. Sci., Technol. B 24, 2523 (2006).CrossRefGoogle Scholar
62.Liu, J.R., Mao, Y.B., Lan, E., Banatao, D.R., Forse, G.J., Lu, J., Blom, H.O., Yeates, T.O., Dunn, B., Chang, J.P., J. Am. Chem. Soc. 130, 16908 (2008).CrossRefGoogle Scholar
63.Bae, C., Shin, H., Moon, J., Sung, M.M., Chem. Mater. 18, 1085 (2006).CrossRefGoogle Scholar
64.Bae, C., Kim, H., Shin, H., Chem. Comm. 47, 5145 (2011).CrossRefGoogle Scholar
65.Li, J.-R., Garno, J.C., Nano Lett. 8, 1916 (2008).CrossRefGoogle Scholar
66.Bae, C., Moon, J., Shin, H., Kim, J., Sung, M.M., J. Am. Chem. Soc. 129, 14232 (2007).CrossRefGoogle Scholar
67.Ras, R.H.A., Sahramo, E., Malm, J., Raula, J., Karppinen, M., J. Am. Chem. Soc. 130, 11252 (2008).CrossRefGoogle Scholar
68.Wang, L., Xia, L., Li, G., Ravaine, S., Zhao, X.S., Angew. Chem. Int. Ed. 47, 4725 (2008).CrossRefGoogle Scholar
69.Glotzer, S.C., Solomon, M.J., Nat. Mater. 6, 557 (2007).CrossRefGoogle Scholar
70.Yang, S.-M., Kim, S.-H., Lim, J.-M., Yi, G.-R., J. Mater. Chem. 18, 2177 (2008).CrossRefGoogle Scholar
71.Li, F., Josephson, D.P., Stein, A., Angew. Chem. Int. Ed. 50, 360 (2011).CrossRefGoogle Scholar
72.Ji, R., PhD dissertation, Martin-Luther-Universität Halle-Wittenberg (2008).Google Scholar
73.Ribes, G., Mitard, J., Denais, M., Bruyere, S., Monsieur, F., Parthasarathy, C., Vincent, E., Ghibaudo, G., IEEE Trans. Dev. Mater. Reliab. 5, 5 (2005).CrossRefGoogle Scholar
74.Kim, H., McIntyre, P.C., J. Korean Phys. Soc. 48, 5 (2006).Google Scholar
75.Appenzeller, J., Proc. IEEE 96, 201 (2008).CrossRefGoogle Scholar
76.Kim, H., Lee, H.-B.-R., Maeng, W.-J., Thin Solid Films 517, 2563 (2009).CrossRefGoogle Scholar
77.Kim, J.B., Fuentes-Hernandez, C., Hwang, D.K., Potscavage, W.J. Jr., Cheun, H., Kippelen, B., Org. Electron. 12, 45 (2011).CrossRefGoogle Scholar
78.Choi, K.M., Hyung, G.W., Yang, J.W., Koo, J.R., Kim, Y.K., Kwon, S.J., Cho, E.S., Mol. Cryst. Liq. Cryst. 529, 131 (2011).CrossRefGoogle Scholar
79.Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H., Nature 432, 488 (2004).CrossRefGoogle Scholar
80.Cho, D.H., Yang, S.H., Shin, J.-H., Byun, C.W., Ryu, M.K., Lee, J.I., Hwang, C.S., Chu, H.Y., J. Korean Phys. Soc. 54, 531 (2009).CrossRefGoogle Scholar
81.Nam, S.-W., Lee, M.-H., Lee, S.-H., Lee, D.-J., Rossnagel, S.M., Kim, K.-B., Nano Lett. 10, 3324 (2010).CrossRefGoogle Scholar
82.Liu, X., Deng, X., Sciortino, P. Jr., Buonanno, M., Walters, F., Varghese, R., Bacon, J., Chen, L., O’Brien, N., Wang, J.J., Nano Lett. 6, 2723 (2006).CrossRefGoogle Scholar
83.Szeghalmi, A., Helgert, M., Brunner, R., Heyroth, F., Gösele, U., Knez, M., Adv. Funct. Mater. 20, 2053 (2010).CrossRefGoogle Scholar
85.Zhang, H., Yu, X., Braun, P.V., Nat. Nanotechnol. 6, 277 (2011).CrossRefGoogle Scholar
86.Schmidt, V., Riel, H., Senz, S., Karg, S., Riess, W., Gösele, U., Small 2, 85 (2006).CrossRefGoogle Scholar
87.Goldberger, J., Hochbaum, A.I., Fan, R., Yang, P., Nano Lett. 6, 973 (2006).CrossRefGoogle Scholar
88.Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P., Meyyappan, M., Nano Lett. 4, 1247 (2004).CrossRefGoogle Scholar
89.Park, K.J., Doub, J.M., Gougousi, T., Parsons, G.N., Appl. Phys. Lett. 86, 051903 (2005).CrossRefGoogle Scholar
90.Seo, E.K., Lee, J.W., Sung-Suh, H.M., Sung, M.M., Chem. Mater. 16, 1878 (2004).CrossRefGoogle Scholar
91.Forro, L., Chauvet, O., Emin, D., Zuppiroli, L., Berger, H., Lévy, F., J. Appl. Phys. 75, 633 (1994).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Surface modification and fabrication of 3D nanostructures by atomic layer deposition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Surface modification and fabrication of 3D nanostructures by atomic layer deposition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Surface modification and fabrication of 3D nanostructures by atomic layer deposition
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *