Skip to main content Accessibility help
Hostname: page-component-6c8bd87754-lkb8j Total loading time: 0.335 Render date: 2022-01-20T05:57:50.641Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Structures for biomimetic, fluidic, and biological applications

Published online by Cambridge University Press:  06 December 2016

Emmanuel Stratakis
Institute of Electronic Structure and Laser, Foundation for Research and Technology–Hellas, Greece;
Hojeong Jeon
Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, South Korea;
Sangmo Koo
Department of Mechanical Engineering, University of California, Berkeley, USA;
Get access


Controlling the interactions of light with matter is crucial for the success and scalability of materials-processing applications. When ultrashort pulsed lasers are used, the optimal interplay between the laser and the material parameters enable highly precise and controllable fabrication, allowing structuring down to the nanometer scale. Besides this, a unique aspect for many applications is the possibility of material modifications at multiple length scales, leading to complex micro- and nanoscale architectures, while adding a new dimension to optimization of the structures. As a result, femtosecond laser micro-/nanoprocessing offers unique capabilities for three-dimensional, material-independent modification, opening new opportunities for innovation and exploitation in the materials industry. This article focuses on the implementation of ultrashort pulsed laser-based micro- and nanofabrication methodologies for the realization of structures relevant to biomimetic, fluidic, and biological applications. The wealth of possibilities and the number of new approaches for obtaining complex high-resolution features at the micro- and nanoscales are demonstrated.

Research Article
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Stratakis, E.I., Zorba, V., in Nanotechnologies for the Life Sciences (Wiley-VCH, Weinheim, Germany, 2010), p. 379.Google Scholar
Stratakis, E., Sci. Adv. Mater. 4, 407 (2012).CrossRef
Sugioka, K., Cheng, Y., Light Sci. Appl. 3, e149 (2014).CrossRef
Jeon, H., Schmidt, R., Barton, J.E., Hwang, D.J., Gamble, L.J., Castner, D.G., Grigoropoulos, C.P., Healy, K.E., J. Amer. Chem. Soc. 133, 6138 (2011).CrossRef
Di Cio, S., Gautrot, J.E., Acta Biomater. 30, 26 (2016).CrossRef
Jiang, L., ACS Nano 10, 207 (2016).CrossRef
Mashinchian, O., Turner, L.-A., Dalby, M.J., Laurent, S., Shokrgozar, M.A., Bonakdar, S., Imani, M., Mahmoudi, M., Nanomedicine (Lond.) 10, 829 (2015).CrossRef
Jahed, Z., Molladavoodi, S., Seo, B.B., Gorbet, M., Tsui, T.Y., Mofrad, M.R.K., Biomaterials 35, 9363 (2014).CrossRef
Spagnolo, B., Brunetti, V., Leménager, G., De Luca, E., Sileo, L., Pellegrino, T., Pompa, P.P., De Vittorio, M., Pisanello, F., Sci. Rep. 5, 10531 (2015).CrossRef
Terzaki, K., Kissamitaki, M., Skarmoutsou, A., Fotakis, C., Charitidis, C.A., Farsari, M., Vamvakaki, M., Chatzinikolaidou, M., J. Biomed. Mater. Res. A 101, 2283 (2013).CrossRef
Zhang, W., Chen, S., MRS Bull. 36, 1028 (2011).CrossRef
Otuka, A.J., Correa, D.S., Fontana, C.R., Mendonca, C.R., Mater. Sci. Eng. C 35, 185 (2014).CrossRef
Sugioka, K., Cheng, Y., Appl. Phys. Rev. 1, 041303 (2014).CrossRef
Paz, V.F., Emons, M., Obata, K., Ovsianikov, A., Peterhänsel, S., Frenner, K., Reinhardt, C., Chichkov, B., Morgner, U., Osten, W., J. Laser Appl. 24, 042004 (2012).CrossRef
Juodkazis, S., Mizeikis, V., Seet, K.K., Miwa, M., Misawa, H., Nanotechnology 16, 846 (2005).CrossRef
Rekstyte, S., Zukauskas, A., Purlys, V., Gordienko, Y., Malinauskas, M., Appl. Surf. Sci. 270, 382 (2013).CrossRef
Kufelt, O., El-Tamer, A., Sehring, C., Meißner, M., Schlie-Wolter, S., Chichkov, B.N., Acta Biomater. 18, 186 (2015).CrossRef
Ovsianikov, A., Deiwick, A., Van Vlierberghe, S., Dubruel, P., Möller, L., Dräger, G., Chichkov, B., Biomacromolecules 12, 851 (2011).CrossRef
Psycharakis, S., Tosca, A., Melissinaki, V., Giakoumaki, A., Ranella, A., Biomed. Mater. 6, 045008 (2011).CrossRef
Ovsianikov, A., Gruene, M., Pflaum, M., Koch, L., Maiorana, F., Wilhelmi, M., Haverich, A., Chichkov, B., Biofabrication 2, 014104 (2010).CrossRef
Stankevicius, E., Gertus, T., Rutkauskas, M., Gedvilas, M., Raciukaitis, G., Gadonas, R., Smilgevicius, V., Malinauskas, M., J. Micromech. Microeng. 22, 065022 (2012).CrossRef
Ma, Z., Koo, S., Finnegan, M.A., Loskill, P., Huebsch, N., Marks, N.C., Conklin, B.R., Grigoropoulos, C.P., Healy, K.E., Biomaterials 35, 1367 (2014).CrossRef
Farsari, M., Vamvakaki, M., Chichkov, B.N., J. Opt. 12, 124001 (2010).CrossRef
Klar, T.A., Wollhofen, R., Jacak, J., Phys. Scr. T162, 014049 (2014).CrossRef
Schneider, J., Zahn, J., Maglione, M., Sigrist, S.J., Marquard, J., Chojnacki, J., Kräusslich, H.-G., Sahl, S.J., Engelhardt, J., Hell, S.W., Nat. Methods 12, 827 (2015).CrossRef
Sun, Z.B., Dong, X.-Z., Chen, W.-Q., Nakanishi, S., Duan, X.-M., Kawata, S., Adv. Mater. 20, 914 (2008).CrossRef
Stratakis, E., Ranella, A., Fotakis, C., Biomicrofluidics 5, 13411 (2011).CrossRef
Zorba, V., Stratakis, E., Barberoglou, M., Spanakis, E., Tzanetakis, P., Anastasiadis, S.H., Fotakis, C., Adv. Mater. 20, 4049 (2008).CrossRef
Ranella, A., Barberoglou, M., Bakogianni, S., Fotakis, C., Stratakis, E., Acta Biomater. 6, 2711 (2010).CrossRef
Paradisanos, I., Fotakis, C., Anastasiadis, S.H., Stratakis, E., Appl. Phys. Lett. 107, 111603 (2015).CrossRef
Papadopoulou, E.L., Barberoglou, M., Zorba, V., Manousaki, A., Pagkozidis, A., Stratakis, E., Fotakis, C., J. Phys. Chem. C 113, 2891 (2009).CrossRef
Barberoglou, M., Zorba, V., Pagozidis, A., Fotakis, C., Stratakis, E., Langmuir 26, 13007 (2010).CrossRef
Stratakis, E., Mateescu, A., Barberoglou, M., Vamvakaki, M., Fotakis, C., Anastasiadis, S.H., Chem. Commun. 46, 4136 (2010).CrossRef
McDonald, J.C., Whitesides, G.M., Acc. Chem. Res. 35, 491 (2002).CrossRef
Aoun, L., Weiss, P., Laborde, A., Ducommun, B., Lobjois, V., Vieu, C., Lab Chip 14, 2344 (2014).CrossRef
Tanaka, Y., Morishima, K., Shimizu, T., Kikuchi, A., Yamato, M., Okano, T., Kitamori, T., Lab Chip 6, 230 (2006).CrossRef
Liao, Y., Cheng, Y., Liu, C., Song, J., He, F., Shen, Y., Chen, D., Xu, Z., Fan, Z., Wei, X., Sugioka, K., Midorikawa, K., Lab Chip 13, 1626 (2013).CrossRef
Sugioka, K., Cheng, Y., Lab Chip 12, 3576 (2012).CrossRef
He, F., Liao, Y., Lin, J., Song, J., Qiao, L., Cheng, Y., Sugioka, K., Sensors (Basel) 14, 19402 (2014).CrossRef
Lin, D., He, F., Liao, Y., Lin, J., Liu, C., Song, J., Cheng, Y., J. Opt. 15, 025601 (2013).CrossRef
Xu, B.B., Zhang, Y.-L., Xia, H., Dong, W.-F., Ding, H., Sun, H.-B., Lab Chip 13, 1677 (2013).CrossRef
Sugioka, K., Cheng, Y., Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications (Springer, New York, 2013).Google Scholar
Sugioka, K., Cheng, Y., MRS Bull. 36, 1020 (2011).CrossRef
Liao, Y., Song, J., Li, E., Luo, Y., Shen, Y., Chen, D., Cheng, Y., Xu, Z., Sugioka, K., Midorikawa, K., Lab Chip 12, 746 (2012).CrossRef
Sugioka, K., Cheng, Y., Appl. Phys. A 114, 215 (2014).CrossRef
An, R., Li, Y., Dou, Y., Yang, H., Gong, Q., Opt. Express 13, 1855 (2005).CrossRef
Ke, K., Hasselbrink, E.F., Hunt, A.J., Anal. Chem. 77, 5083 (2005).CrossRef
Cheng, Y., Sugioka, K., Midorikawa, K., Opt. Lett. 29, 2007 (2004).CrossRef
Kim, M., Hwang, D.J., Jeon, H., Hiromatsu, K., Grigoropoulos, C.P., Lab Chip 9, 311 (2009).CrossRef
Haque, M., Zacharia, N.S., Ho, S., Herman, P.R., Biomed. Opt. Express 4, 1472 (2013).CrossRef
Yang, T., Nava, G., Minzioni, P., Veglione, M., Bragheri, F., Lelii, F.D., Vazquez, R.M., Osellame, R., Cristiani, I., Biomed. Opt. Express 6, 2991 (2015).CrossRef
Stratakis, E., Ranella, A., Fotakis, C., “Laser-Based Biomimetic Tissue Engineering,” in Laser Technology in Biomimetics: Basics and Applications, Schmidt, V., Belegratis, M.R., Eds. (Springer, Heidelberg, 2013), pp. 211236.CrossRefGoogle Scholar
Papadopoulou, E.L., Samara, A., Barberoglou, M., Manousaki, A., Pagakis, S.N., Anastasiadou, E., Fotakis, C., Stratakis, E., Tissue Eng. C 16, 497 (2010).CrossRef
Simitzi, C., Stratakis, E., Fotakis, C., Athanassakis, I., Ranella, A., J. Tissue Eng. Regen. Med., published online December 26, 2013,
Simitzi, C., Efstathopoulos, P., Kourgiantaki, A., Ranella, A., Charalampopoulos, I., Fotakis, C., Athanassakis, I., Stratakis, E., Gravanis, A., Biomaterials 67, 115 (2015).CrossRef
Hench, L.L., Polak, J.M., Science 295, 1014 (2002).CrossRef
Keselowsky, B.G., Collard, D.M., Garcia, A.J., Biomaterials 25, 5947 (2004).CrossRef
Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., Ingber, D.E., Science 276, 1425 (1997).CrossRef
Dalby, M.J., Gadegaard, N., Tare, R., Andar, A., Riehle, M.O., Herzyk, P., Wilkinson, C.D.W., Oreffo, R.O.C., Nat. Mater. 6, 997 (2007).CrossRef
McMurray, R.J., Gadegaard, N., Tsimbouri, P.M., Burgess, K.V., McNamara, L.E., Tare, R., Murawski, K., Kingham, E., Oreffo, R.O.C., Dalby, M.J., Nat. Mater. 10, 637 (2011).CrossRef
Jeon, H., Koo, S., Reese, W.M., Loskill, P., Grigoropoulos, C.P., Healy, K.E., Nat. Mater. 14, 918 (2015).CrossRef
Discher, D.E., Janmey, P., Wang, Y.L., Science 310, 1139 (2005).CrossRef
Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E., Cell 126, 677 (2006).CrossRef
Jun, I., Chung, Y.-W., Heo, Y.-H., Han, H.-S., Park, J., Jeong, H., Lee, H., Lee, Y.B., Kim, Y.-C., Seok, H.-K., Shin, H., Jeon, H., ACS Appl. Mater. Interfaces 8, 3407 (2016).CrossRef
Murugan, R., Ramakrishna, S., Tissue Eng. 13, 1845 (2007).CrossRef
Jun, I., Chung, Y.-W., Park, J., Han, H.-S., Park, J., Kim, S., Lee, H., Kim, S.H., Han, J.-H., Kim, H., Seok, H.-K., Kim, Y.-C., Jeon, H., Adv. Healthc. Mater. 5, 2396 (2016).CrossRef
Sprague, E.A., Tio, F., Ahmed, S.H., Granada, J.F., Bailey, S.R., Circ. Cardiovasc. Interv. 5, 499 (2012).CrossRef
Qin, X.H., Torgersen, J., Saf, R., Mühleder, S., Pucher, N., Ligon, S.C., Holnthoner, W., Redl, H., Ovsianikov, A., Stampfl, J., Liska, R., J. Polym. Sci. A Polym. Chem. 51, 4799 (2013).CrossRef
Ovsianikov, A., Mironov, V., Stampfl, J., Liska, R., Expert Rev. Med. Devices 9, 613 (2012).CrossRef
Ovsianikov, A., Deiwick, A., Van Vlierberghe, S., Pflaum, M., Wilhelmi, M., Dubruel, P., Chichkov, B., Materials 4, 288 (2011).CrossRef
Raimondi, M.T., Eaton, S.M., Laganà, M., Aprile, V., Nava, M.M., Cerullo, G., Osellame, R., Acta Biomater. 9, 4579 (2013).CrossRef
Mihailescu, M., Paun, I.A., Zamfirescu, M., Luculescu, C.R., Acasandrei, A.M., Dinescu, M., J. Mater. Sci. 51, 4262 (2016).CrossRef
Marino, A., Filippeschi, C., Genchi, G.G., Mattoli, V., Mazzolai, B., Ciofani, G., Acta Biomater. 10, 4304 (2014).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Structures for biomimetic, fluidic, and biological applications
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Structures for biomimetic, fluidic, and biological applications
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Structures for biomimetic, fluidic, and biological applications
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *