Skip to main content Accessibility help
Hostname: page-component-99c86f546-4hcbs Total loading time: 0.244 Render date: 2021-12-05T06:12:15.858Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Strategies for accelerating the adoption of materials informatics

Published online by Cambridge University Press:  10 September 2018

Logan Ward
The University of Chicago, and Data Science and Learning Division, Argonne National Laboratory, USA;
Muratahan Aykol
Toyota Research Institute, USA;
Ben Blaiszik
The University of Chicago, and Data Science and Learning Division, Argonne National Laboratory, USA;
Ian Foster
Department of Computer Science, The University of Chicago, and Data Science and Learning Division, Argonne National Laboratory, USA;
Bryce Meredig
Citrine Informatics, USA;
James Saal
QuesTek InnovationsLLC, USA;
Santosh Suram
Toyota Research Institute, USA;
Get access


Ongoing, rapid innovations in fields ranging from microelectronics, aerospace, and automotive to defense, energy, and health demand new advanced materials at even greater rates and lower costs. Traditional materials R&D methods offer few paths to achieve both outcomes simultaneously. Materials informatics, while a nascent field, offers such a promise through screening, growing databases of materials for new applications, learning new relationships from existing data resources, and building fast predictive models. We highlight key materials informatics successes from the atomic-scale modeling community, and discuss the ecosystem of open data, software, services, and infrastructure that have led to broad adoption of materials informatics approaches. We then examine emerging opportunities for informatics in materials science and describe an ideal data ecosystem capable of supporting similar widespread adoption of materials informatics, which we believe will enable the faster design of materials.

Data-Centric Science for Materials Innovation
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Lutin, J.M., Kornhauser, A.L., Lerner-Lam, E., ITE J. 83, 28 (2013).Google Scholar
Angus, D.C., JAMA 314, 767 (2015).CrossRefGoogle Scholar
Ren, F., Ward, L., Williams, T., Laws, K.J., Wolverton, C., Hattrick-Simpers, J., Mehta, A., Sci. Adv. 4, eaaq1566 (2018).CrossRefGoogle Scholar
Kalinin, S.V., Sumpter, B.G., Archibald, R.K., Nat. Mater. 14, 973 (2015).CrossRefGoogle Scholar
Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., Kim, C., NPJ Comput. Mater. 3, 54 (2017).CrossRefGoogle Scholar
Curtarolo, S., Hart, G.L.W., Nardelli, M.B., Mingo, N., Sanvito, S., Levy, O., Nat. Mater. 12, 191 (2013).CrossRefGoogle Scholar
Lin, L., Mater. Perform. Charact. 4, 148 (2015).Google Scholar
Ashby, M.F., Mater. Sci. Technol. 5, 517 (1989).CrossRefGoogle Scholar
Smithson, H., Marianetti, C.A., Morgan, D., Van der Ven, A., Predith, A., Ceder, G., Phys. Rev. B Condens. Matter 66, 144107 (2002).CrossRefGoogle Scholar
Greeley, J., Jaramillo, T.F., Bonde, J., Chorkendorff, I.B., Nørskov, J.K., Nat. Mater. 5, 909 (2006).CrossRefGoogle Scholar
Curtarolo, S., Morgan, D., Ceder, G., Calphad 29, 163 (2005).CrossRefGoogle Scholar
Madsen, G.K.H., J. Am. Chem. Soc. 128, 12140 (2006).CrossRefGoogle Scholar
Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A., APL Mater. 1, 11002 (2013).CrossRefGoogle Scholar
Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C., JOM 65, 1501 (2013).CrossRefGoogle Scholar
Kirklin, S., Saal, J.E., Meredig, B., Thompson, A., Doak, J.W., Aykol, M., Rühl, S., Wolverton, C., NPJ Comput. Mater. 1, 15010 (2015).CrossRefGoogle Scholar
Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R.H., Nelson, L.J., Hart, G.L.W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., Levy, O., Comput. Mater. Sci. 58, 227 (2012).CrossRefGoogle Scholar
Aykol, M., Kim, S., Hegde, V.I., Snydacker, D., Lu, Z., Hao, S., Kirklin, S., Morgan, D., Wolverton, C., Nat. Commun. 7, 13779 (2016).CrossRefGoogle Scholar
Jain, A., Persson, K.A., Ceder, G., APL Mater. 4, 53102 (2016).CrossRefGoogle Scholar
de Jong, M, Chen, W., Geerlings, H., Asta, M., Persson, K.A., Sci. Data 2, 1 (2015).Google Scholar
Meredig, B., Wolverton, C., Chem. Mater. 26, 1985 (2014).CrossRefGoogle Scholar
Emery, A.A., Saal, J.E., Kirklin, S., Hegde, V.I., Wolverton, C., Chem. Mater. 28, 5621 (2016).CrossRefGoogle Scholar
Ghiringhelli, L.M., Vybiral, J., Levchenko, S.V., Draxl, C., Scheffler, M., Phys. Rev. Lett. 114, 105503 (2015).CrossRefGoogle Scholar
Kong, C.S., Luo, W., Arapan, S., Villars, P., Iwata, S., Ahuja, R., Rajan, K., J. Chem. Inf. Model. 52, 1812 (2012).CrossRefGoogle Scholar
Mannodi-Kanakkithodi, A., Huan, T.D., Ramprasad, R., Chem. Mater. 29, 9001 (2017).CrossRefGoogle Scholar
Behler, J., J. Chem. Phys. 145, 170901 (2016).CrossRefGoogle ScholarPubMed
Li, Z., Kermode, J.R., De Vita, A., Phys. Rev. Lett. 114, 96405 (2015).CrossRefGoogle Scholar
Jørgensen, M.S., Larsen, U.F., Jacobsen, K.W., Hammer, B., J. Phys. Chem. A 122, 1504 (2018).CrossRefGoogle Scholar
Faber, F., Lindmaa, A., von Lilienfeld, O.A., Armiento, R., Int. J. Quantum Chem. 115, 1094 (2015).CrossRefGoogle Scholar
Ward, L., Liu, R., Krishna, A., Hegde, V.I., Agrawal, A., Choudhary, A., Wolverton, C., Phys. Rev. B Condens. Matter 96, 24104 (2017).CrossRefGoogle Scholar
Hautier, G., Fischer, C.C., Jain, A., Mueller, T., Ceder, G., Chem. Mater. 22, 3762 (2010).CrossRefGoogle Scholar
Meredig, B., Agrawal, A., Kirklin, S., Saal, J.E., Doak, J.W., Thompson, A., Zhang, K., Choudhary, A., Wolverton, C., Phys. Rev. B Condens. Matter 89, 94104 (2014).CrossRefGoogle Scholar
Faber, F.A., Lindmaa, A., von Lilienfeld, O.A., Armiento, R., Phys. Rev. Lett. 117, 135502 (2016).CrossRefGoogle Scholar
Seko, A., Hayashi, H., Kashima, H., Tanaka, I., Phys. Rev. Mater. 2, 13805 (2018).CrossRefGoogle Scholar
Seko, A., Maekawa, T., Tsuda, K., Tanaka, I., Phys. Rev. B Condens. Matter 89, 54303 (2014).CrossRefGoogle Scholar
Hong, Q.-J., van de Walle, A., Calphad 52, 88 (2016).CrossRefGoogle Scholar
Hutchinson, M.L., Antono, E., Gibbons, B.M., Paradiso, S., Ling, J., Meredig, B., Comput. Sci. Learning (2017), Scholar
Ward, L., Wolverton, C., Curr. Opin. Solid State Mater. Sci. 21, 167 (2017).CrossRefGoogle Scholar
Mathew, K., Montoya, J.H., Faghaninia, A., Dwarakanath, S., Aykol, M., Tang, H., Chu, I., Smidt, T., Bocklund, B., Horton, M., Dagdelen, J., Wood, B., Liu, Z.-K., Neaton, J., Ong, S.P., Persson, K., Jain, A., Comput. Mater. Sci. 139, 140 (2017).CrossRefGoogle Scholar
Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N., Kozinsky, B., Comput. Mater. Sci. 111, 218 (2016).CrossRefGoogle Scholar
Mayeshiba, T., Wu, H., Angsten, T., Kaczmarowski, A., Song, Z., Jenness, G., Xie, W., Morgan, D., Comput. Mater. Sci. 126, 90 (2017).CrossRefGoogle Scholar
Hjorth Larsen, A., Jørgen Mortensen, J., Blomqvist, J., Castelli, I.E., Christensen, R., Dułak, M., Friis, J., Groves, M.N., Hammer, B., Hargus, C., Hermes, E.D., Jennings, P.C., Bjerre Jensen, P., Kermode, J., Kitchin, J.R., Leonhard Kolsbjerg, E., Kubal, J., Kaasbjerg, K., Lysgaard, S., Bergmann Maronsson, J., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schiøtz, J., Schütt, O., Strange, M., Thygesen, K.S., Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z., Jacobsen, K.W., J. Phys. Condens. Matter 29, 273002 (2017).CrossRefGoogle Scholar
Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V.L., Persson, K.A., Ceder, G., Comput. Mater. Sci. 68, 314 (2013).CrossRefGoogle Scholar
Belsky, A., Hellenbrandt, M., Karen, V.L., Luksch, P., Acta Crystallogr. B Struct. Sci. 58, 364 (2002).CrossRefGoogle Scholar
Grazulis, S., Chateigner, D., Downs, R.T., Yokochi, A.T., Quiros, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P., Le Bail, A., J. Appl. Crystallogr. 42, 726 (2009).CrossRefGoogle Scholar
Hall, S.R., Allen, F.H., Brown, I.D., Acta Crystallogr. A 47, 655 (1991).CrossRefGoogle Scholar
Otsuka, S., Kuwajima, I., Hosoya, J., Xu, Y., Yamazaki, M., 2011 Int. Conf. Emerging Intell. Data. Web Technol. (IEEE, 2011), pp. 2229.CrossRefGoogle Scholar
Yamazaki, M., Xu, Y., in Volume 6: Materials and Fabrication, Parts A and B, ASME 2009 Pressure Vessels and Piping Conference (ASME, 2009), pp. 15611568.Google Scholar
DeCost, B.L., Hecht, M.D., Francis, T., Webler, B.A., Picard, Y.N., Holm, E.A., Integr. Mater. Manuf. Innov. 6, 197 (2017).CrossRefGoogle Scholar
Gaultois, M.W., Sparks, T.D., Borg, C.K.H., Seshadri, R., Bonificio, W.D., Clarke, D.R., Chem. Mater. 25, 2911 (2013).CrossRefGoogle Scholar
Zunger, A., Phys. Rev. B Condens. Matter 22, 5839 (1980).CrossRefGoogle Scholar
Pettifor, D.G., Mater. Sci. Technol. 4, 675 (1988).CrossRefGoogle Scholar
Villars, P., Phillips, J., Phys. Rev. B Condens. Matter 37, 2345 (1988).CrossRefGoogle Scholar
Lukas, H., Fries, S.G., Sundman, B., Computational Thermodynamics (Cambridge University Press, Cambridge, UK, 2007).CrossRefGoogle Scholar
Sparks, T.D., Gaultois, M.W., Oliynyk, A., Brgoch, J., Meredig, B., Scr. Mater. 111, 10 (2015).CrossRefGoogle Scholar
Suram, S.K., Haber, J.A., Jin, J., Gregoire, J.M., ACS Comb. Sci. 17, 224 (2015).CrossRefGoogle Scholar
Balachandran, P.V., Xue, D., Theiler, J., Hogden, J., Lookman, T., Sci. Rep. 6, 19660 (2016).CrossRefGoogle Scholar
Ling, J., Hutchinson, M., Antono, E., Paradiso, S., Meredig, B., Integr. Mater. Manuf. Innov. 6, 207 (2017).CrossRefGoogle Scholar
Xue, D., Balachandran, P.V., Hogden, J., Theiler, J., Xue, D., Lookman, T., Nat. Commun. 7, 11241 (2016).CrossRefGoogle Scholar
Suram, S.K., Xue, Y., Bai, J., Le Bras, R., Rappazzo, B., Bernstein, R., Bjorck, J., Zhou, L., van Dover, R.B., Gomes, C.P., Gregoire, J.M., ACS Comb. Sci. 19, 37 (2017).CrossRefGoogle Scholar
Green, M.L., Choi, C.L., Hattrick-Simpers, J.R., Joshi, A.M., Takeuchi, I., Barron, S.C., Campo, E., Chiang, T., Empedocles, S., Gregoire, J.M., Kusne, A.G., Martin, J., Mehta, A., Persson, K., Trautt, Z., Van Duren, J., Zakutayev, A., Appl. Phys. Rev. 4, 11105 (2017).CrossRefGoogle Scholar
Lu, X.-G., Sci. Bull. 60, 1966 (2015).CrossRefGoogle Scholar
Nikolaev, P., Hooper, D., Webber, F., Rao, R., Decker, K., Krein, M., Poleski, J., Barto, R., Maruyama, B., NPJ Comput. Mater. 2, 16031 (2016).CrossRefGoogle Scholar
Dima, A., Bhaskarla, S., Becker, C., Brady, M., Campbell, C., Dessauw, P., Hanisch, R., Kattner, U., Kroenlein, K., Newrock, M., Peskin, A., Plante, R., Li, S.-Y., Rigodiat, P.-F., Amaral, G.S., Trautt, Z., Schmitt, X., Warren, J., Youssef, S., JOM 68, 2053 (2016).CrossRefGoogle Scholar
Puchala, B., Tarcea, G., Marquis, E.A., Hedstrom, M., Jagadish, H.V., Allison, J.E., JOM 68, 2035 (2016).CrossRefGoogle Scholar
Nguyen, P., Konstanty, S., Nicholson, T., O’Brien, T., Schwartz-Duval, A., Spila, T., Nahrstedt, K., Campbell, R.H., Gupta, I., Chan, M., McHenry, K., Paquin, N., 2017 17th IEEE/ACM Int. Symp. Cluster, Cloud and Grid Comput. (CCGRID) (IEEE, 2017), pp. 1120.CrossRefGoogle Scholar
Kim, E., Huang, K., Tomala, A., Matthews, S., Strubell, E., Saunders, A., McCallum, A., Olivetti, E., Sci. Data 4, 170127 (2017).CrossRefGoogle Scholar
Swain, M.C., Cole, J.M., J. Chem. Inf. Model. 56, 1894 (2016).CrossRefGoogle Scholar
Tchoua, R.B., Chard, K., Audus, D.J., Ward, L.T., Lequieu, J., De Pablo, J.J., Foster, I.T., 2017 IEEE 13th Int. Conf. e-Science (e-Science) (IEEE, 2017), pp. 109118.CrossRefGoogle Scholar
Beckman, P., Skluzacek, T.J., Chard, K., Foster, I., Proc. 29th Int. Conf. Scientific Statistical Database Mgmt.—SSDBM ’17 (ACM Press, New York, 2017), Scholar
Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij.J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L.B., Bourne, P.E., Bouwman, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C.T., Finkers, R., Gonzalez-Beltran, A., Gray, A.J.G., Groth, P., Goble, C., Grethe, J.S., Heringa, J., ’t Hoen, P.A., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S.J., Martone, M.E., Mons, A., Packer, A.L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M.A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., Mons, B., Sci. Data 3, 160018 (2016).CrossRefGoogle ScholarPubMed
Blaiszik, B., Chard, K., Pruyne, J., Ananthakrishnan, R., Tuecke, S., Foster, I., JOM 68, 2045 (2016).CrossRefGoogle Scholar
O’Mara, J., Meredig, B., Michel, K., JOM 68, 2031 (2016).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Strategies for accelerating the adoption of materials informatics
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Strategies for accelerating the adoption of materials informatics
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Strategies for accelerating the adoption of materials informatics
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *